用Lobe Chat部署本地化, 搭建AI聊天机器人

Lobe Chat可以关联多个模型,可以调用外部OpenAI, gemini,通义千问等, 也可以关联内部本地大模型Ollama, 可以当作聊天对话框消息框来集成使用

在这里插入图片描述

安装方法参考:
https://github.com/lobehub/lobe-chat

https://lobehub.com/zh/docs/self-hosting/platform/docker

Docker下安装:

$ docker run -d -p 3210:3210 --name lobe-chat lobehub/lobe-chat

一分钟之内搞定,前提docker下载设为国内的镜像

使用:

1 关联模型:

在这里插入图片描述
调用Open AI
关联模型
调用 Ollama

选择模型
后台配置好后,在前端选择引用哪个模型

2 角色设定

角色设定
这些说明标签,越详细越好,因为后面的回答按这些设定的身份来给你答案。

3 各种身份的聊天助手,加到聊天框里去回答你相对专业的问题

聊天助手

使用简单吧,Lobe Chat对本地化非常的友好

交流q:
link :  316853809
### LobeChat 和 Ollama 使用指南 #### 一、LobeChat 概述 LobeChat 是一款开源的 AI 聊天框架,旨在帮助用户轻松构建和部署个性化的聊天机器人。该工具集成了多种先进的自然语言处理模型和技术,能够提供高质量的对话服务[^3]。 #### 二、Ollama 集成概述 为了进一步增强 LobeChat 的功能,可以将其与 Ollama 进行集成。这不仅扩展了系统的应用场景,还提高了其灵活性和支持范围。具体来说,这种组合允许开发者利用 Ollama 提供的强大 API 接口来实现更复杂的功能和服务[^2]。 #### 三、安装准备 在开始之前,请确保已准备好以下环境: - 支持 Docker 容器运行的操作系统; - 已经安装好 Git 版本控制系统用于获取源码; - 如果计划使用 GPU 加速,则需配置相应的驱动程序及 CUDA 环境; #### 四、部署过程详解 ##### 1. 获取最新版本代码库 通过命令行克隆仓库到本地机器: ```bash git clone https://github.com/lobehub/LobeChat.git cd LobeChat ``` ##### 2. 构建镜像文件 根据官方文档指示,在项目根目录下执行如下指令完成容器化打包工作: ```dockerfile docker build -t lobe-chat . ``` ##### 3. 启动应用程序实例 创建一个新的网络桥接以便于后续组件间通信,并启动主节点: ```bash docker network create lobenet docker run --name=lobe-main --network=lobenet -d -p 8080:8080 lobe-chat ``` ##### 4. 添加 Ollama 插件模块 访问 [Ollama 文档](https://ollama.ai/docs) 并按照说明下载对应插件包至指定路径内,之后重启整个集群使更改生效即可享受全新特性带来的便捷之处。 #### 五、自定义设置建议 对于想要深入了解内部机制或是追求极致性能优化的朋友而言,可以从以下几个方面入手调整参数选项以达到最佳效果: - 修改 `config.json` 文件内的各项数值; - 编辑 `.env` 变量表单影响全局行为模式; - 自行训练专有的 NLP 模型替换默认加载项;
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值