原文地址http://blog.csdn.net/aws3217150
在此之前,我们已经学习了前馈网络的两种结构——多层感知器和卷积神经网络,这两种结构有一个特点,就是假设输入是一个独立的没有上下文联系的单位,比如输入是一张图片,网络识别是狗还是猫。但是对于一些有明显的上下文特征的序列化输入,比如预测视频中下一帧的播放内容,那么很明显这样的输出必须依赖以前的输入, 也就是说网络必须拥有一定的”记忆能力”。为了赋予网络这样的记忆力,一种特殊结构的神经网络——递归神经网络(Recurrent Neural Network)便应运而生了。网上对于RNN的介绍多不胜数,这篇《Recurrent Neural Networks Tutorial》对于RNN的介绍非常直观,里面手把手地带领读者利用Python实现一个RNN语言模型,强烈推荐。为了不重复作者 Denny Britz的劳动,本篇将简要介绍RNN,并强调RNN训练的过程与多层感知器的训练差异不大(至少比CNN简单),希望能给读者一定的信心——只要你理解了多层感知器,理解RNN便不是事儿:-)。
RNN的基本结构
首先有请读者看看我们的递归神经网络的容貌:
乍一看,好复杂的大家伙,没事,老样子,看我如何慢慢将其拆解,正所谓见招拆招,我们来各个击破。
上图左侧是递归神经网络的原始结构,如果先抛弃中间那个令人生畏的闭环,那其实就是简单”输入层=>隐藏层=>输出层”的三层结构,我们在多层感知器的介绍中已经非常熟悉,然而多了一个非常陌生的闭环,也就是说输入到隐藏层之后,隐藏层还会给自己也来一发,环环相扣,晕乱复杂。
我们知道,一旦有了环,就会陷入“先有蛋还是先有鸡”的逻辑困境,为了跳出困境我们必须人为定义一个起始点,按照一定的时间序列规定好计算顺序,做到有条不紊,于是实际上我们会将这样带环的结构展开成一个序列网络,也就是上图右侧被“unfold”之后的结构。先别急着能理解RNN,我们来点轻松的,先介绍这样的序列化网络结构包含的参数记号:
- 网络某一时刻的输入 xt ,和之前介绍的多层感知器的输入一样, xt 是一个 n 维向量,不同的是递归网络的输入将是一整个序列,也就是 x=[x0,...,xt−1,xt,xt+1,...xT] ,对于语言模型,每一个 xt 将代表一个词向量,一整个序列就代表一句话。
- ht 代表时刻 t 的隐藏状态
- ot 代表时刻 t 的输出
- 输入层到隐藏层直接的权重由 U 表示,它将我们的原始输入进行抽象作为隐藏层的输入
- 隐藏层到隐藏层的权重 W ,它是网络的记忆控制者,负责调度记忆。
- 隐藏层到输出层的权重 V ,从隐藏层学习到的表示将通过它再一次抽象,并作为最终输出。
RNN的Forward阶段
上一小节我们简单了解了网络的结构,并介绍了其中一些记号,是时候介绍它具体的运作过程了。首先在
t=0
的时刻,
U,V,W
都被随机初始化好,
h0
通常初始化为0,然后进行如下计算:
值得注意的是,我们说递归神经网络拥有记忆能力,而这种能力就是通过 W 将以往的输入状态进行总结,而作为下次输入的辅助。可以这样理解隐藏状态:
RNN的Backward阶段
上一小节我们说到了RNN如何做序列化预测,也就是如何一步步预测出
o0,o1,....ot−1,ot,ot+1.....
,接下来我们来了解网络的知识
U,V,W
是如何炼成的。
其实没有多大新意,我们还是利用在之前讲解多层感知器和卷积神经网络用到的backpropagation方法。也就是将输出层的误差
Cost
,求解各个权重的梯度
∇U,∇V,∇W
,然后利用梯度下降法更新各个权重。现在问题就是如何求解各个权重的梯度,其它的所有东西都在之前介绍中谈到了,所有的trick都可以复用。
由于是序列化预测,那么对于每一时刻
t
,网络的输出
ot
都会产生一定误差
et
,误差的选择任君喜欢,可以是cross entropy也可以是平方误差等等。那么总的误差为
E=∑tet
,我们的目标就是要求取
回忆之前我们介绍 多层感知器的backprop算法,我们知道算法的trick是定义一个 δ=∂e∂s ,首先计算出输出层的 δL ,再向后传播到各层 δL−1,δL−2,.... ,那么如何计算 δ 呢?先看下图:
之前我们推导过,只要关注当前层次发射出去的链接即可,也就是
RNN的训练困难
虽然上一节中,我们强调了RNN的训练程序和MLP没太大差异,虽然写程序容易,但是训练起来却是千难万阻。为什么呢?因为我们的网络是根据输入而展开的,输入越长,展开的网络越深,那么对于“深度”网络训练有什么困难呢?最常见的是“gradient explode”和“gradient vanish”。这种问题在RNN中如何体现呢?为了强调这个问题,我们模仿Yoshua Bengio的论文《On the difficulty of training recurrent neural networks》的推导,重写一下RNN的梯度求解过程,为了推导方便,我们人为地为
W,U
打上标签
Wt,Ut
,即认为当确定好时间长度
T
,RNN就变成普通的MLP。打上标签后的RNN变成如下:
假如对于时刻
t+1
产生的误差
et+1
,我们想计算它对于
W1,W2,....,Wt,Wt+1
的梯度,可以如下计算:
反复运用链式法则,我们可以求出每一个 ∇W1,∇W2,....,∇Wt,∇Wt+1 ,需要注意的是,实际RNN模型对于 W,U 都是不打标签的,也就是在不同时刻都是共享同样的参数,这样可以大大减少训练参数,和CNN的共享权重类似。对于共享参数的RNN,我们只需将上述的一系列式子抹去标签并求和,就可以得到Yoshua Bengio论文中所推导的梯度计算式子:
其中 ∂+hk∂W 代表不利用链式法则直接求导,也就是假如对于函数 f(h(x)) ,对其直接求导结果如下:
参考引用
《Recurrent Neural Networks Tutorial》
《On the difficulty of training recurrent neural networks》