ESKF(error state Kalman filter)介绍
ESKF(error state Kalman filter)是Kalman滤波的一种特殊形式,相比于KF或EKF,UKF等,ESKF有以下优势:
1.error state 总是接近于0,Kalman Filter工作在原点附近, 故远离奇异值、万向节锁,并且保证了线性化的合理性和有效性;
2.error state 总是很小,因此二阶项都可以忽略,因此雅可比矩阵的计算会很简单,很迅速;
3.error state 中的参数数量与运动自由度是相等的,避免了过参数化(over-parameterization or redundancy)而导致协方差矩阵奇异的风险
4.error state变化平缓(因为较大的error已经集成到norminal state上),不需要太多了correction;
常用的VIO(visual inertial odeometry)或LIO(lidar inertial odometry)中,通常采用IMU进行预积分,下面讲一下IMU预积分的公式推导。
true state kinematics
对于true state kinematics(动力学), 有:
对于IMU的真实值
与测量值
之间的关系:
把公式2带入公式1可得:
nominal-state kinematics
相比于true state, norminal state没有噪声和扰动(perturbations), norminal state的公式如下:
error-state kinematics
对于位置来说,
对于速度
来说,
注释Rodrigues公式: ,当
时,