清华计算几何-ConvexHull(凸包)-JarivsMarch

选择排序(selectionsort)

 

在未排序的几何中求出最大的元素添加到已排序几何的末尾.

 沿着极边查找下一个极点(JarivsMarch)

给定极边IK,逆时针查找下一个极点,  K与S点相连, 如果S位于最右侧(最靠近IK)的点,则为下一个极点,KS也是下一条机边。

用to left测试求解下一个算法

已经有极边IK, 以K为起点,选取任意一个S为下一个假想极点, KS是下一条极边。以KS和其他剩余点W作to left测试,如W在KS左边,则继续查找。如果W在KS右边,则K = W,不断重复就能求出最终的下一个极点。

 JarivsMarch

  假定第一个极点O,重复上述to left测试不断找到下一个点,直到形成闭环,下一个点又为点O的时候,则求出完整的凸包点集,这就是JarivsMarch算法,也成为(GiftWrapping).

 

求取第一个极点--lowest-then-leftmost算法

在坐标系下最低点即为极点(如果最低处相同, 则求比较哪个点位置更左),即为lowest-then-leftmost算法。

代码实现

lowest-then-leftmost

int FindLowestThenLeftmost(const vector<Point>& inPoints)
{
	if (inPoints.size() == 0)
		return -1;

	int ltfIndex = 0;
	for (int index = 1; index < inPoints.size(); index++)
	{
		if (inPoints[ltfIndex].y < inPoints[index].y ||
			(inPoints[ltfIndex].y == inPoints[index].y && inPoints[ltfIndex].x < inPoints[index].x))
		{
			ltfIndex = index;
		}
	}

	return ltfIndex;
};

JarivsMarch

void JarvisMarch_GetConvexPointSet(vector<Point>& inPoints)
{
	for (int index = 0; index < inPoints.size(); index++)
	{
		inPoints[index].extreme = false;
	}

	int ltfIndex = FindLowestThenLeftmost(inPoints);
	int k = ltfIndex;
	int n = inPoints.size();

	do
	{
		inPoints[k].extreme = true;
		int s = -1;

		for (int t = 0; t < n; t++)
		{
			if (t != k && t != s && (s == -1 || IsLeft(inPoints[k], inPoints[s], inPoints[t])))
			{
				s = t;
			}
		}

		inPoints[k].succ = s;
		k = s;

	} while (k != ltfIndex);

}

测试算法

int main()
{
    std::cout << "Hello World!\n";

	// point set contruct
	vector<Point> inPoints =
	{
		{0, 0},
		{-1, -1},
		{5, 2},
		{4, 5},
		{3, 3},
		{-1, 3},
		{2, 2},
		{-3, 2},
	};


	JarvisMarch_GetConvexPointSet(inPoints);
	int firstPointIndex = -1;

	for (int index = 0; inPoints.size(); index++)
	{
		if (inPoints[index].extreme)
		{
			firstPointIndex = index;
			break;
		}
	}

	int k = firstPointIndex;

	do
	{
		printf("(%f, %f)\n", inPoints[k].x, inPoints[k].y);
		k = inPoints[k].succ;

	} while (k != firstPointIndex);
}

 输出结果

 JarivsMarch的算法复杂度

给定N个点, 每次查找出新的极点复杂度都是N, 所以剩余的算法复杂度的取决于需要查找多少个极点,也就是凸包存在多少个极点。

最复杂情况

每个点都是极点, 查找多个算法复杂度O(n), 总算法复杂度(On2)

最简单的情况

三个点就构成了凸包, 查找多个算法复杂度O(1), 总算法复杂度(On)

算法复杂度

将凸包极点个数h = CHS, 则JarivsMarch算法复杂度为: O(n * CHS)

总体上来看JarivsMarch算法复杂度还是优于极点四模式法, 毕竟JarivsMarch算法只要不碰上最复杂情况,计算量是小于极点四模式法的.

资料参考

参考资料

[1]清华计算几何 P23-P30

  • 9
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值