目录
11.2.1、YOLOv8算法在注意力机制方向的改进主要内容
11.2.2、YOLOv8算法在注意力机制方向的改进的代码示例
11.3.1、YOLOv8算法在网络结构更换方向的改进主要内容
11.3.2、YOLOv8算法在网络结构更换方向的改进的代码示例
十一、yolov8算法改进方向及方法
11.1、yolov8算法改进方向及方法概述
YOLOv8算法的改进方向及方法涵盖了多个方面。首先,注意力机制是其中一个关键的改进点,这有助于模型更好地关注到图像中的重要部分。其次,YOLOv8在网络结构上的改进也相当重要,例如更换卷积、更换block、更换backbone、更换head等。具体来说,YOLOv8在Backbone模块上使用C2f模块,检测头则使用了anchor-free + Decoupled-head的方法。此外,损失函数的使用也进行了优化,结合了分类BCE和回归CIOU + VFL的组合。
另外,模型轻量化是YOLOv8改进的一个重要方面,比如通过压缩模型、改进骨干网络、优化损失函数等方式实现。值得一提的是,YOLOv8还借鉴了最新的EfficientNetV2主干网络来提升模型的检测效果,主要通过引入