yolov8算法改进方向及方法(一)

YOLOv8算法在注意力机制和网络结构方面进行了改进,包括使用AFPN替换PAN结构,引入EMA注意力机制,结合BiLevel Spatial Attention Module,以及采用EfficientNetV2主干网络,提升模型性能和检测效果。同时,模型轻量化和针对小目标检测的优化也是改进重点。
摘要由CSDN通过智能技术生成

目录

十一、yolov8算法改进方向及方法

11.1、yolov8算法改进方向及方法概述

11.2、YOLOv8算法在注意力机制方向的改进

11.2.1、YOLOv8算法在注意力机制方向的改进主要内容

11.2.2、YOLOv8算法在注意力机制方向的改进的代码示例

11.3、YOLOv8算法在网络结构更换方向的改进

11.3.1、YOLOv8算法在网络结构更换方向的改进主要内容

11.3.2、YOLOv8算法在网络结构更换方向的改进的代码示例


十一、yolov8算法改进方向及方法

11.1、yolov8算法改进方向及方法概述

YOLOv8算法的改进方向及方法涵盖了多个方面。首先,注意力机制是其中一个关键的改进点,这有助于模型更好地关注到图像中的重要部分。其次,YOLOv8在网络结构上的改进也相当重要,例如更换卷积、更换block、更换backbone、更换head等。具体来说,YOLOv8在Backbone模块上使用C2f模块,检测头则使用了anchor-free + Decoupled-head的方法。此外,损失函数的使用也进行了优化,结合了分类BCE和回归CIOU + VFL的组合。

另外,模型轻量化是YOLOv8改进的一个重要方面,比如通过压缩模型、改进骨干网络、优化损失函数等方式实现。值得一提的是,YOLOv8还借鉴了最新的EfficientNetV2主干网络来提升模型的检测效果,主要通过引入

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

电阻电容及电线

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值