Spatio-temporal-Diffusion-Point-Processes

清华大学电子工程系城市科学与计算研究中心最新提出时空扩散点过程,突破已有方法建模时空点过程的受限概率形式和高采样成本等缺陷,实现了灵活、高效且易于计算的时空点过程模型,可广泛用于城市自然灾害、突发事故和居民活动等时空事件的建模与预测,促进城市规划和管理的智能化发展。扩散模型还能预测地震和犯罪

时空点过程是具有时间和空间属性的随机事件集合,相关研究方法主要是对随机事件在时间和空间上的分布和演化规律进行建模,这对于许多领域都至关重要,包括地震学、疾病传播、城市流动、环境监测等。然而,以往的研究在建模时通常将时间和空间视为条件独立,无法准确捕捉事件时空之间的复杂相互作用,且计算对数似然需要使用蒙特卡罗来近似积分,这导致对时空点过程的理解和预测存在很大的局限性。

清华大学电子工程系城市科学与计算研究中心近日在 KDD2023 发表论文《Spatio-temporal Diffusion Point Processes》,提出时空扩散点过程(DSTPP)模型,率先实现了对复杂时空联合分布的灵活精准建模。由于不对概率密度函数的参数形式施加任何限制,这种基于扩散模型的点过程方法解决了当前时空建模的一系列困难问题,在捕捉复杂时空动态性方面具有很大潜力。该方法建立了新的生成式时空建模范式,为该领域的研究和应用带来了新的可能性。

  • 论文链接:https://arxiv.org/abs/2305.12403

  • 开源代码及数据:https://github.com/tsinghua-fib-lab/Spatio-temporal-Diffusion-Point-Processes

针对时空点过程,研究团队提出了全新的参数化框架,利用扩散模型学习复杂的时空联合分布。该框架将目标联合分布的学习分解为多个步骤,每个步骤可由高斯分布准确描述。为

时空动作检测(spatio-temporal action detection)是一项计算机视觉任务,旨在从视频片段中准确地检测和识别出发生的动作。与传统的动作识别任务相比,时空动作检测旨在通过不仅仅检测动作在空间上的出现,还要捕捉动作在时间上的变化。 时空动作检测往往涉及以下几个主要步骤: 1. 帧级特征提取:首先,利用现有的特征提取技术,从每个视频帧中提取稳定而有信息量的特征,以捕捉空间信息。 2. 时间建模:接下来,通过对连续帧之间的变化进行建模,来捕捉动作的时间相关性和动态信息。这可以通过各种技术,如光流,差分图和循环网络等来实现。 3. 动作检测:在获得空间和时间特征后,利用学习算法(如深度神经网络)来进行动作检测。这通常通过将时空特征输入到分类器,然后根据预先训练的模型推断动作类别和位置。 4. 时空定位:最后,定位动作在视频中的准确位置。这可以通过在时间上进行滑窗检测,并使用非极大值抑制来抑制重叠检测结果来实现。 时空动作检测在很多领域具有广泛应用,比如视频监控、智能交通、运动分析和人机交互等。通过准确地检测和识别动作,我们可以实现更精确的行为理解和动作预测,从而为许多实际应用带来便捷和效益。然而,时空动作检测仍然存在一些挑战,如动作遮挡、背景干扰和不同尺度的动作等问题,所以该领域的研究仍在不断发展和进步。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值