伽马函数 
称 为伽马函数,其中参数
,伽马函数具有如下性质:
,n为自然数;或写作
余元公式:对于 ,有
- 与贝塔函数
的关系 :
- 对于
;伽马函数是严格凹函数。
- x足够大时,可以用Stirling 公式来计算Gamma 函数值:
伽马分布 
背景:
若一个元器件能抵挡一些外来冲击,但遇到第k次冲击即告失效,则第k 次冲击来到的时间X(寿命)服从形状参数为k的伽马分布 .
密度函数:
为形状参数 ,
为尺度参数 ;
密度函数图如下所示,
数学期望与方差
与指数分布
的关系
若形状参数为整数k,则伽马变量可以表示成k个独立同分布的指数变量之和。即,
若 ,则
,其中
【独立同分布】
卡方分布 
与伽马分布的关系
称 的伽马分布为自由度为n的卡方分布,即
密度函数
期望与方差
注:后期再讲数理统计中的t分布与F分布时,再重新细讲卡方分布。参考重要抽样分布:卡方分布(χ2分布)、t分布和F分布
贝塔分布
背景
很多比率,比如,产品的不合格率、机器的维修率、某商品的市场占有率、射击的命中率....都是在区间(0,1)上取值的随机变量,可用beta分布来描述这些随机变量
贝塔函数
称 为贝塔函数,其中参数
。贝塔函数的性质:
密度函数
当 时,为f(x);否则为0.
其中 都是形状参数。【下图中 a就是
,b就是
】
贝塔分布是定义在(0,1)区间上的连续概率分布,是伯努利分布和二项式分布的共轭先验分布。
数学期望与方差
与均匀分布的关系
当 时的贝塔分布就是区间(0,1)上的均匀分布,即
.
参考 Gamma/伽马函数,伽马分布 ; 伽玛函数