在本文中,我们将展示如何在图像上执行半结构化检索。
我们可以通过Gemini Pro Vision从图像中推断出结构化输出,然后将这些结构化输出索引到向量数据库中。通过自动检索功能,我们可以对这些数据进行结构化和语义查询。
环境设置
首先,安装所需的Python包:
%pip install llama-index-multi-modal-llms-gemini
%pip install llama-index-vector-stores-qdrant
%pip install llama-index-embeddings-gemini
%pip install llama-index-llms-gemini
!pip install llama-index 'google-generativeai>=0.3.0' matplotlib qdrant_client
获取Google API密钥
import os
GOOGLE_API_KEY = "<你的GOOGLE_API密钥>"
os.environ["GOOGLE_API_KEY"] = GOOGLE_API_KEY
下载图像
在这里我们下载了来自Kaggle的完整SROIE v2数据集,该数据集包含扫描的收据图像。
获取图像文件
from pathlib import Path
import random
from typing import Optional
def get_image_files(dir_path, sample: Optional[int] = 10, shuffle: bool = False):
dir_path = Path(dir_path)
image_paths = []
for image_path in dir_path.glob("*.jpg"):
image_paths.append(image_path)
if shuffle:
random.shuffle(image_paths)
return image_paths[:sample] if sample else image_paths
image_files = get_image_files("SROIE2019/test/img", sample=100)
使用Gemini提取结构化输出
定义ReceiptInfo类
from pydantic import BaseModel, Field
class ReceiptInfo(BaseModel):
company: str = Field(..., description="Company name")
date: str = Field(..., description="Date field in DD/MM/YYYY format")
address: str = Field(..., description="Address")
total: float = Field(..., description="total amount")
currency: str = Field(..., description="Currency of the country (in abbreviations)")
summary: str = Field(..., description="Extracted text summary of the receipt")
定义pydantic_gemini函数
from llama_index.multi_modal_llms.gemini import GeminiMultiModal
from llama_index.core.program import MultiModalLLMCompletionProgram
from llama_index.core.output_parsers import PydanticOutputParser
prompt_template_str = "Can you summarize the image and return a response with the following JSON format:"
async def pydantic_gemini(output_class, image_documents, prompt_template_str):
gemini_llm = GeminiMultiModal(api_key=GOOGLE_API_KEY, model_name="models/gemini-pro-vision")
llm_program = MultiModalLLMCompletionProgram.from_defaults(
output_parser=PydanticOutputParser(output_class),
image_documents=image_documents,
prompt_template_str=prompt_template_str,
multi_modal_llm=gemini_llm,
verbose=True
)
response = await llm_program.acall()
return response
运行图像文件并提取数据
from llama_index.core import SimpleDirectoryReader
from llama_index.core.async_utils import run_jobs
async def aprocess_image_file(image_file):
print(f"Image file: {image_file}")
img_docs = SimpleDirectoryReader(input_files=[image_file]).load_data()
output = await pydantic_gemini(ReceiptInfo, img_docs, prompt_template_str)
return output
async def aprocess_image_files(image_files):
tasks = [aprocess_image_file(image_file) for image_file in image_files]
outputs = await run_jobs(tasks, show_progress=True, workers=5)
return outputs
outputs = await aprocess_image_files(image_files)
转换结构化表示为TextNode对象
from llama_index.core.schema import TextNode
from typing import List
def get_nodes_from_objs(objs: List[ReceiptInfo], image_files: List[str]) -> List[TextNode]:
nodes = []
for image_file, obj in zip(image_files, objs):
node = TextNode(
text=obj.summary,
metadata={
"company": obj.company,
"date": obj.date,
"address": obj.address,
"total": obj.total,
"currency": obj.currency,
"image_file": str(image_file),
},
excluded_embed_metadata_keys=["image_file"],
excluded_llm_metadata_keys=["image_file"]
)
nodes.append(node)
return nodes
nodes = get_nodes_from_objs(outputs, image_files)
print(nodes[0].get_content(metadata_mode="all"))
将这些节点索引到向量存储中
import qdrant_client
from llama_index.vector_stores.qdrant import QdrantVectorStore
from llama_index.core import StorageContext, VectorStoreIndex
from llama_index.embeddings.gemini import GeminiEmbedding
from llama_index.llms.gemini import Gemini
from llama_index.core import Settings
# 创建本地Qdrant向量存储
client = qdrant_client.QdrantClient(path="qdrant_gemini")
vector_store = QdrantVectorStore(client=client, collection_name="collection")
# 全局设置
Settings.embed_model = GeminiEmbedding(model_name="models/embedding-001", api_key=GOOGLE_API_KEY)
Settings.llm = Gemini(api_key=GOOGLE_API_KEY)
storage_context = StorageContext.from_defaults(vector_store=vector_store)
index = VectorStoreIndex(nodes=nodes, storage_context=storage_context)
定义自动检索器
from llama_index.core.vector_stores import MetadataInfo, VectorStoreInfo
from llama_index.core.retrievers import VectorIndexAutoRetriever
vector_store_info = VectorStoreInfo(
content_info="Receipts",
metadata_info=[
MetadataInfo(name="company", description="The name of the store", type="string"),
MetadataInfo(name="address", description="The address of the store", type="string"),
MetadataInfo(name="date", description="The date of the purchase (in DD/MM/YYYY format)", type="string"),
MetadataInfo(name="total", description="The final amount", type="float"),
MetadataInfo(name="currency", description="The currency of the country the purchase was made (abbreviation)", type="string")
]
)
retriever = VectorIndexAutoRetriever(
index=index,
vector_store_info=vector_store_info,
similarity_top_k=2,
empty_query_top_k=10,
verbose=True
)
运行一些查询
from IPython.display import Image
def display_response(nodes: List[TextNode]):
for node in nodes:
print(node.get_content(metadata_mode="all"))
display(Image(filename=node.metadata["image_file"], width=200))
nodes = retriever.retrieve("Tell me about some restaurant orders of noodles with total < 25")
display_response(nodes)
nodes = retriever.retrieve("Tell me about some grocery purchases")
display_response(nodes)
可能遇到的错误
- API Key错误:确保你的GOOGLE API密钥是有效的,并已正确设置在环境变量中。
- 数据文件未找到:确保你下载的数据集路径正确无误。
- 包安装失败:确保你有稳定的网络连接以下载所需的包。
如果你觉得这篇文章对你有帮助,请点赞,关注我的博客,谢谢!
参考资料: