使用Neo4j实现高级检索生成(RAG)技术
引言
在现代人工智能应用中,检索生成(RAG)技术通过结合信息检索和生成模型,为用户提供了精确且上下文丰富的回答。然而,在数据量大且复杂的情况下,传统的RAG方法可能无法满足需求。本文将介绍在Neo4j中实现的高级RAG技术,包括典型RAG、父检索器、假设性问题和摘要四种策略,以帮助开发者更高效地实现数据检索和上下文保留。
主要内容
1. 典型RAG
传统RAG方法直接检索索引的确切数据。这种方法简单直接,但在上下文保留和复杂概念识别方面可能有所欠缺。
2. 父检索器
在父检索器策略中,文档被划分为较小的块,称为父文档和子文档。子文档用于更具体的概念表示,而父文档用于确保上下文保留。
3. 假设性问题
假设性问题策略处理文档以确定其可能回答的潜在问题。这些问题被索引以更好地表示特定概念,同时检索父文档以确保上下文保留。
4. 摘要
摘要策略通过创建文档的摘要并进行索引,以减少数据量。与上述策略类似,父文档仍用于上下文保留。
环境配置
首先,需要定义以下环境变量:
export OPENAI_API_KEY=<YOUR_OPENAI_API_KEY>
export NEO4J_URI=<YOUR_NEO4J_URI>
export NEO4J_USERNAME=<YOUR_NEO4J_USERNAME>
export NEO4J_PASSWORD=<YOUR_NEO4J_PASSWORD>
代码示例
1. 数据填充
要将示例数据填充到数据库中,可以运行以下脚本