Visdrone MOT数据集格式

Multi-Object Tracking

数据集下载链接:http://aiskyeye.com/download/multi-object-tracking/(需要注册)

Both the ground truth annotations and the submission of results on test data have the same format for multi-object tracking. That is, each text file stores the multi-object tracking results of the corresponding video clip, with each line containing an object instance with the assigned identity in the video frame. The format of each line is as follows:

<frame_index>,<target_id>,<bbox_left>,<bbox_top>,<bbox_width>,<bbox_height>,<score>,<object_category>,<truncation>,<occlusion>

Please find the example format of the submission of results for object detection in images here(BaiduYun|Google Drive).

PositionNameDescription
1<frame_index>The frame index of the video frame
2<target_id>In the DETECTION result file, the identity of the target should be set to the constant -1.In the GROUNDTRUTH file, the identity of the target is used to provide the temporal corresponding relation of the bounding boxes in different frames.
3<bbox_left>The x coordinate of the top-left corner of the predicted bounding box
4<bbox_top>The y coordinate of the top-left corner of the predicted object bounding box
5<bbox_width>The width in pixels of the predicted object bounding box
6<bbox_height>The height in pixels of the predicted object bounding box
7<score>The score in the DETECTION file indicates the confidence of the predicted bounding box enclosing an object instance.The score in the GROUNDTRUTH file is set to 1 or 0. 1 indicates the bounding box is considered in evaluation, while 0 indicates the bounding box will be ignored.
8<object_category>The object category indicates the type of annotated object, (i.e., ignored regions (0), pedestrian (1), people (2), bicycle (3), car (4), van (5), truck (6), tricycle (7), awning-tricycle (8), bus (9), motor (10), others (11))
9<truncation>The score in the DETECTION file should be set to the constant -1.The score in the GROUNDTRUTH file indicates the degree of object parts appears outside a frame (i.e., no truncation = 0 (truncation ratio 0%), and partial truncation = 1 (truncation ratio 1% ∼ 50%)).
10<occlusion>The score in the DETECTION file should be set to the constant -1.The score in the GROUNDTRUTH file indicates the fraction of objects being occluded (i.e., no occlusion = 0 (occlusion ratio 0%), partial occlusion = 1 (occlusion ratio 1% ∼ 50%), and heavy occlusion = 2 (occlusion ratio 50% ~ 100%)).
VisDrone2019-MOT数据集通常用于单目标跟踪任务,而YOLO(You Only Look Once)是一种用于物体检测的任务。将MOT数据转换成YOLO所需的标注文件,需要两个步骤:首先,从原始MOT数据中提取出每个帧的目标位置信息;然后,按照YOLO的数据格式规则组织这些信息。 由于这涉及到的具体编码工作通常涉及到图像处理库如OpenCV、Pandas等,并且会包含一些自定义脚本编写,这里提供一个简化的概述: 1. **读取和解析MOT数据**:使用Pandas或其他数据处理工具读取`.txt`格式MOT跟踪数据,例如DataFrame可以存储每一帧的跟踪ID、框坐标和可能的其他属性。 ```python import pandas as pd def parse_mot_data(filename): df = pd.read_csv(filename, delimiter=' ', header=None) return df ``` 2. **格式化为YOLO所需**:YOLO数据格式通常是每行包含图片文件名、类别ID、x中心、y中心、宽度和高度。你需要提取出框的位置信息并添加必要的信息到新的CSV文件中。 ```python def mot_to_yolo(df, output_filename): df[['image_id', 'class', 'xmin', 'ymin', 'xmax', 'ymax']] = ... # 根据MOT数据结构填充新列 df[['image_id', 'class', 'center_x', 'center_y', 'width', 'height']] = ... # 计算YOLO所需的值 df.to_csv(output_filename, index=False) # 导出到csv ``` 注意,上述代码中的细节需要根据实际MOT数据结构进行调整。例如,`df[['image_id', 'class', ...]]`这部分需要提取对应的信息,可能还需要处理缺失值和错误的情况。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值