【OpenCV】OpenCV-Python实现相机标定+利用棋盘格相对位姿估计

本文介绍了如何通过拍摄棋盘格图片进行相机标定,然后实时解算棋盘格相对于摄像头的位姿。首先,通过调整图片拍摄并获取高质量棋盘格图像,然后进行相机标定计算内参数矩阵和畸变系数。接着,使用OpenCV的solvePnP函数解算位姿,并将旋转矢量转换为欧拉角。在注意点中强调了解算的位姿是目标坐标系相对于相机坐标系的,并讨论了运行效率。实验结果显示,位姿解算的误差在1%以内,证明了方法的有效性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

写在前面:

    这次要实现的功能:实时检测棋盘格相对于摄像头的距离以及位姿。为此主要步骤可分为以下三个步骤:标定图片的拍摄、相机的标定、以及棋盘格位姿的实时解算。


目录

1. 标定图片的拍摄

2. 相机的标定

3. 棋盘格位姿的实时解算

4. 需要注意的点

5. 运行效率问题


1. 标定图片的拍摄

棋盘格图片

        打印上面的图片,尽量铺满一张A4纸,边缘留出一定的空白以方便握持。这里使用的是10×7的棋盘格,内部有9×6个角点。

        然后使用摄像头来随意拍摄棋盘格的15-20张照片。这里笔者踩了一个小坑,笔者一开始用的是电脑的相机应用拍摄了20张照片,分辨率为1280×720。进行后面的步骤都没什么问题,但是测得的结果怎么都不准。这是因为这颗摄像头录像和拍照的分辨率不一致,因此编写一个小程序来获得标定所用的照片。

import cv2
camera = cv2.VideoCapture(0)
i = 1
while i < 50:
    _, frame = camera.read()
    cv2.imwrite("E:/images/"+str(i)+'.png', frame, [int(cv2.IMWRITE_PNG_COMPRESSION), 0]) 
    cv2.imshow('frame', frame)
    i += 1
    if cv2.waitKey(200) & 0xFF == 27: # 按ESC键退出
        break
cv2.destroyAllWindows()

        保存的图片经过手动筛选,挑选出清晰度和完整度较好的20张,如下所示:

利用摄像头拍摄的20张棋盘格图片

2. 相机的标定

        相机标定的原理此处略去,网上可以找到大量的相关资料。

        有一点需要注意,标定中将世界坐标系的建在标定板上,所有的z坐标均为0。但是x和y坐标需要经过测量得出。笔者所打印的棋盘格一格的边长为2.6厘米,因此每一个角点在世界坐标系中的坐标都需要以2.6厘米为倍数。

        相机标定部分的主要代码如下:

objp = np.zeros((6 * 9, 3), np.float32)
objp[:, :2] = np.mgrid[0:9, 0:6].T.reshape(-1, 2)  # 将世界坐标系建在标定板上,所有点的Z坐标全部为0,所以只需要赋值x和y
objp = 2.6 * objp   # 打印棋盘格一格的边长为2.6cm
obj_points = []     # 存储3D点
img_points = []     # 存储2D点
images=glob.glob("E:/image/*.png")  #黑白棋盘的图片路径

for fname in images:
    img = cv2.imread(fname)
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    size = gray.shape[::-1]
    ret, corners = cv2.findChessboardCorners(gray, (9, 6), None)
    if ret:
        obj_points.append(objp)
        corners2 = cv2.cornerSubPix(gray, corners, (5, 5), (-1, -1), (cv2.TERM_CRITERIA_MAX_ITER | cv2.TERM_CRITERIA_EPS, 30, 0.001))  
        if [corners2]:
            img_points.append(corners2)
        else:
            img_points.append(corners)
        cv2.drawChessboardCorners(img, (9, 6), corners, ret)  # 记住,OpenCV的绘制函数一般无返回值
        cv2.waitKey(1)
_, mtx, dist, _, _ = cv2.calibrateCamera(obj_points, img_points, size, None, None)

# 内参数矩阵
Camera_intrinsic = {"mtx": mtx,"dist": dist,}

        后面解算位姿所需要的参数为内参数矩阵mtx和畸变系数dist。据此求得的内参数矩阵和畸变系数如下:

        内参矩阵的具体表达式如下:

M=\left[\begin{matrix}\frac{1}{\text{d}x}&0&{​{u}_{0}}\\0&\frac{1}{\text{d}y}&{​{v}_{0}}\\0&0&1\\\end{matrix}\right]\left[\begin{matrix}f&0&0\\0&f&0\\0&0&1\\\end{matrix}\right]=\left[\begin{matrix}{​{f}_{x}}&0&{​{u}_{0}}\\0&{​{f}_{y}}&{​{v}_{0}}\\0&0&1 \\\end{matrix}\right]

        其中,\text{d}x\text{d}y分别是每个像素在图像平面xy方向上的物理尺寸,({​{u}_{0}},{​{v}_{0}})是图像坐标系原点在像素坐标系中的坐标,f为摄像头的焦距,{​{f}_{x}}{​{f}_{y}}为焦距f与像素物理尺寸的比值,单位为个(像素数目)。 

        据此可以得到,这台摄像头的{​{f}_{x}}\approx {​{f}_{y}}\approx 450,说明焦距f约等于450个像素的物理尺寸。{​{u}_{0}}\approx 376{​{v}_{0}}\approx 234。这台摄像头的像素为640×480,因此{​{u}_{0}}的理论值应为320,v_0的理论值应为240。误差主要是因为摄像头的分辨率太低,实际角点在像素坐标系中显示不准;此外,目标坐标系的测量时也会带来误差。

3. 棋盘格位姿的实时解算

        利用solvePnP函数可以实时解算出每一帧的旋转矢量rvec和平移矢量tvec。旋转矢量虽然简洁,但是作为结果显示不够直观,故需要将其转换为欧拉角。

        在欧拉角中,俯仰角(pitch)代表绕x轴旋转的角度, 偏航角(yaw)代表绕y轴旋转的角度,滚转角(roll)代表绕z轴旋转的角度。其中,默认逆时针选择为正,顺时针旋转为负。

        该部分的主要代码如下:

obj_points = objp   # 存储3D点
img_points = []     # 存储2D点

#从摄像头获取视频图像
camera = cv2.VideoCapture(0)

while True:
    _, frame = camera.read()
    gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
    size = gray.shape[::-1]
    ret, corners = cv2.findChessboardCorners(gray, (9, 6), None)
    if ret:    # 画面中有棋盘格
        img_points = np.array(corners)
        cv2.drawChessboardCorners(frame, (9, 6), corners, ret)
        # rvec: 旋转向量 tvec: 平移向量
        _, rvec, tvec = cv2.solvePnP(obj_points, img_points, Camera_intrinsic["mtx"], Camera_intrinsic["dist"])    # 解算位姿
        distance = math.sqrt(tvec[0]**2+tvec[1]**2+tvec[2]**2)  # 计算距离
        rvec_matrix = cv2.Rodrigues(rvec)[0]    # 旋转向量->旋转矩阵
        proj_matrix = np.hstack((rvec_matrix, tvec))    # hstack: 水平合并
        eulerAngles = cv2.decomposeProjectionMatrix(proj_matrix)[6]  # 欧拉角
        pitch, yaw, roll = eulerAngles[0], eulerAngles[1], eulerAngles[2]
        cv2.putText(frame, "dist: %.2fcm, yaw: %.2f, pitch: %.2f, roll: %.2f" % (distance, yaw, pitch, roll), (10, frame.shape[0] - 20), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 0), 2)
        cv2.imshow('frame', frame)
        if cv2.waitKey(1) & 0xFF == 27: # 按ESC键退出
            break
    else:   # 画面中没有棋盘格
        cv2.putText(frame, "Unable to Detect Chessboard", (20, frame.shape[0] - 20), cv2.FONT_HERSHEY_SIMPLEX, 1.3, (0, 0, 255), 3) 
        cv2.imshow('frame', frame)
        if cv2.waitKey(1) & 0xFF == 27: # 按ESC键退出
            break
cv2.destroyAllWindows()

        当画面中检测不到棋盘格,或距离过远无法检测棋盘格的角点时,显示结果如下:

        当画面中能正常检测棋盘格的角点时,显示结果如下:

        左上角第一个红点为标定时所确定的世界坐标系的原点,沿棋盘格向右为x轴正方向,沿棋盘格向下为y轴正方向。 

        此时该棋盘格的坐标原点与摄像头的距离为43.18cm,偏航角为-1.3°,俯仰角为-26.48°,滚转角为3.92°。经过验证,该结果与实际的误差在1%以内,证明了结果的正确性。

4. 需要注意的点

        相对位姿估计的基本问题

  • 输入:相机内参数;多个空间上的特征点在目标坐标系(3D)和相平面坐标系(2D)坐标
  • 输出:目标坐标系相对相机坐标系的位置和姿态

        也就是说,solvePnP函数求解的是目标坐标系相对相机坐标系的位置和姿态。为了提高结果的可读性,最好将初始位置的目标坐标系与相机坐标系的方向同一化。

        相机坐标系的x轴和y轴对应着相平面坐标系的u轴和v轴,因此在实际操作中,确定目标坐标系时按照像素坐标系的方向来确定即可。具体如下:

        此处目标坐标系的坐标原点确定在第一个角点处,目的是为了在编程中简化目标坐标系的设置。实际上将目标坐标系的坐标原点确定在棋盘格的中心更为合理。

        为了验证输出结果为目标坐标系相对于相机坐标系的位姿(顺序很重要),将棋盘格绕x轴逆时针旋转45°,输出俯仰角pitch也约为45°;将棋盘格绕y轴逆时针旋转45°,输出偏航角yaw也约为45°,将棋盘格绕z轴逆时针旋转45°,输出滚转角roll也约为45°。由此证明了输出结果为目标坐标系相对于相机坐标系的位姿。(如果结果符号不对,说明在编程中目标坐标系的设置有误)

5. 运行效率问题

        在程序中加入时钟检测代码,可以得到每运行一帧所需要的计算时间。

逐帧运行时间

        该程序运行于i7-8550U低压CPU平台,性能没有很高。当正常解算位姿时,一帧的平均运行时间在0.01秒以内,可以支持60Hz或90Hz的摄像头运行。但是当画面中没有棋盘格时,一帧的平均运行时间更长,原因是findChessboardCorners在寻找不到角点的情况下运算量更大。但是我们关注的只是正常解算位姿时的运行效率,无法检测棋盘格时的运行效率可以不予考虑。

### Android 设备上的加速度计和陀螺仪数据融合 在Android设备上,将加速度计和陀螺仪的数据进行融合可以通过多种方法来提高角度测量的精度和响应速度。常用的方法有互补滤波器和卡尔曼滤波器。 #### 互补滤波器的应用 互补滤波是一种简单而有效的方式,用于结合低频特性较好的加速度计信号和高频特性好的陀螺仪信号。该方法基于不同频率特性的传感器读数相互补充的原则[^1]: ```java public class ComplementaryFilter { private static final float FILTER_GAIN = 0.98f; public void update(float[] accelerometerValues, float[] gyroscopeValues, long timestamp) { // 计算角速度增量 float dt = (timestamp - lastTimestamp) / 1000000000.0f; // 时间差转换成秒 angle += gyroscopeValues[0] * dt; // 使用加速度计校正角度漂移 float accelAngle = (float)Math.atan2(accelerometerValues[1], accelerometerValues[2]) * 180/Math.PI; // 应用互补滤波公式 angle = FILTER_GAIN * (angle + gyroscopeValues[0]*dt) + (1-FILTER_GAIN)*accelAngle; lastTimestamp = timestamp; } } ``` 这段代码展示了如何利用互补滤波器更新姿态角`angle`,其中`FILTER_GAIN`决定了两种输入源之间的权重分配。 #### 卡尔曼滤波器的应用 对于更加复杂的场景或更高的准确性需求,则可以采用卡尔曼滤波器来进行状态估计。它能够更好地处理噪声并预测未来的状态变化。这里给出一个简化版的状态转移方程与观测模型描述[^2]: - **状态向量**: 包含当前的姿态角及其导数。 - **控制输入矩阵B** 和 控制变量u 可以忽略不计因为这里是被动感知而非主动控制系统。 - **过程噪音Q**, 表征系统内部不确定性;**测量噪音R**, 来自外部环境干扰的影响程度。 具体实现涉及到较为深入的概率论知识以及线性代数运算,因此推荐参考专门针对IMU(惯性测量单元)设计的例子如Starlino IMU Kalman Filter on Arduino项目[^3].
评论 18
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Quentin_HIT

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值