GraphRAG揭秘:构建层次化知识图谱的终极指南
简介
现在的 RAG
检索增强生成是一种使用真实世界信息改进 LLM
输出的技术。
大多数 RAG
方法使用向量相似性作为搜索技术,叫 Baseline RAG
。
但是 RAG
提取的每个文档是独立的,没有显式的结构化关系。
检索出的文档可能缺乏上下文连接,并且依赖于语言模型的推理能力还有检索出的文档。
GraphRAG
是一种结构化的、分层的检索增强生成 ( RAG
) 方法,不同于使用纯文本片段的简单语义搜索方法。
GraphRAG
流程包括从原始文本中提取知识图谱、构建社区层次结构、为这些社区生成摘要,然后在执行基于 RAG
的任务时利用这些结构。
微软在在这种情况下推出了 GraphRAG
,它通过将知识表示为图结构,捕捉更复杂的知识结构和关系,通过这种图结构,可以更容易地获取相关实体的上下文信息。
这样的图结构提供了更直观的知识表示,有助于理解模型的推理过程。也大幅提高了模型的推理问答性能。
一、环境安装
GraphRAG
依赖的 python
版本在 3.10-3.12
之间,执行下列命令: