GraphRAG揭秘:构建层次化知识图谱的终极指南


GraphRAG揭秘:构建层次化知识图谱的终极指南

简介

现在的 RAG 检索增强生成是一种使用真实世界信息改进 LLM 输出的技术。

大多数 RAG 方法使用向量相似性作为搜索技术,叫 Baseline RAG

但是 RAG 提取的每个文档是独立的,没有显式的结构化关系。

检索出的文档可能缺乏上下文连接,并且依赖于语言模型的推理能力还有检索出的文档。

GraphRAG 是一种结构化的、分层的检索增强生成 ( RAG ) 方法,不同于使用纯文本片段的简单语义搜索方法。

GraphRAG 流程包括从原始文本中提取知识图谱、构建社区层次结构、为这些社区生成摘要,然后在执行基于 RAG 的任务时利用这些结构。

微软在在这种情况下推出了 GraphRAG ,它通过将知识表示为图结构,捕捉更复杂的知识结构和关系,通过这种图结构,可以更容易地获取相关实体的上下文信息。

这样的图结构提供了更直观的知识表示,有助于理解模型的推理过程。也大幅提高了模型的推理问答性能。

一、环境安装

GraphRAG 依赖的 python 版本在 3.10-3.12 之间,执行下列命令:


                
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

我码玄黄

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值