无人驾驶规划控制方法论

无人驾驶规划控制涉及状态空间、参数化曲线、系统特征和滑动窗口等方法。最优控制法寻求理论上的最优控制量,确保轨迹曲率连续,避免停车调整。参数化曲线,如B样条曲线,通过控制点调整实现局部约束满足。微分平坦法适用于特定系统,生成满足约束的轨迹。滑动窗口方法则根据实时环境信息进行在线规划,快速响应动态环境。
摘要由CSDN通过智能技术生成

无人驾驶规划控制方法论

无人驾驶规划控制主要方法有:


  1. 基于参数化曲线的轨迹规划方法
  2. 基于系统特征的规划方法
  3. 基于滑动窗口的轨迹规划方法

基于状态空间的轨迹规划方法

基于状态空间的轨迹规划最好的是最优控制法。所谓的最优控制法,就是说通过最优控制的理论找到理论上可以达到的最优控制量u(t),使得系统x(t) = f(x(t),u(t),t),得到轨迹方程:x(t)。根据该公式,就可以让车沿着这条轨迹行驶,然后就可以获得最优结果,使得评价函数e(x)、或者损失函数J(x)最低。
在该方法中,必须要将评价方程和状态方程联系起来,只有满足约束条件,才能使得评级函数置0,求出轨迹方程x(t),获得最优路径。
此方法一般要包含一个或多个性能指标,例如时间、耗油量、路径长度等等。一般才有极小值原理来进行求解。生成的轨迹具有曲率连续的优点,这点非常重要,因为针对无人驾驶来说,连续的曲率是十分重要的,曲率的连续意味着我们再前进的过程中可以在不停车的情况下沿着轨迹行走,而一旦曲率出现中断,就需要在中断点处停下来,调整好方向后,再继续沿着后面的轨迹行进,这点对于无人驾驶是完全不可以接收的。
对于终端时间自由问题的求解一般采用边界值问题 BVP(Boundary Value Problem)的求解方法,这种求解方法需要对问题的解有一个初始估计值,如果初

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值