无人驾驶规划控制方法论
无人驾驶规划控制方法论
无人驾驶规划控制主要方法有:
-
- 基于参数化曲线的轨迹规划方法
- 基于系统特征的规划方法
- 基于滑动窗口的轨迹规划方法
基于状态空间的轨迹规划方法
基于状态空间的轨迹规划最好的是最优控制法。所谓的最优控制法,就是说通过最优控制的理论找到理论上可以达到的最优控制量u(t),使得系统x(t) = f(x(t),u(t),t),得到轨迹方程:x(t)。根据该公式,就可以让车沿着这条轨迹行驶,然后就可以获得最优结果,使得评价函数e(x)、或者损失函数J(x)最低。
在该方法中,必须要将评价方程和状态方程联系起来,只有满足约束条件,才能使得评级函数置0,求出轨迹方程x(t),获得最优路径。
此方法一般要包含一个或多个性能指标,例如时间、耗油量、路径长度等等。一般才有极小值原理来进行求解。生成的轨迹具有曲率连续的优点,这点非常重要,因为针对无人驾驶来说,连续的曲率是十分重要的,曲率的连续意味着我们再前进的过程中可以在不停车的情况下沿着轨迹行走,而一旦曲率出现中断,就需要在中断点处停下来,调整好方向后,再继续沿着后面的轨迹行进,这点对于无人驾驶是完全不可以接收的。
对于终端时间自由问题的求解一般采用边界值问题 BVP(Boundary Value Problem)的求解方法,这种求解方法需要对问题的解有一个初始估计值,如果初