最优轨迹生成(一)—— 微分平坦

移动机器人最优轨迹生成学习笔记

   本系列文章是学习深蓝学院-移动机器人运动规划课程第五章最优轨迹生成 过程中所记录的笔记,本系列文章共包含四篇文章,依次介绍了微分平坦特性、无约束BVP轨迹优化、无约束BIVP轨迹优、 带约束轨迹优化等内容

   本系列文章链接如下:

   最优轨迹生成(一)—— 微分平坦

   最优轨迹生成(二)—— 无约束BVP轨迹优化

   最优轨迹生成(三)—— 无约束BIVP轨迹优化

  

### 微分平坦控制的概念与实现 微分平坦控制是种现代控制理论方法,其核心思想在于利用系统的输入和状态之间的关系,将复杂的非线性系统转化为易于处理的形式。对于微分平坦系统而言,所有的动态变量(即状态和输入)都可以通过有限次微分表示为组称为“平坦输出”的函数及其导数[^1]。 #### 微分平坦控制的核心概念 微分平坦性的定义是指如果存在平坦输出 \( y_f \),使得系统的状态向量 \( x \) 和输入向量 \( u \) 可以显式地由这些平坦输出及其时间导数组合而成,则该系统被称为微分平坦系统。这种特性允许我们通过对平坦输出的设计来间接设计整个系统的轨迹[^2]。 #### 实现步骤概述 尽管不使用诸如“首先”、“然后”之类的引导词,以下是关于如何实现微分平坦控制的关键要点: - **确定平坦输出**:识别并选择合适的平坦输出作为目标变量。 - **重构状态与输入**:基于选定的平坦输出表达所有其他的状态变量和控制输入。 - **路径规划**:设计期望的平坦输出轨迹以满足特定的任务需求。 - **反馈控制器设计**:构建闭环控制系统以跟踪所规划轨迹。 #### 示例代码展示 下面提供了个简单的Python代码片段,演示了如何针对假设的个二阶单输入系统应用基本的微分平坦控制逻辑: ```python import numpy as np from scipy.integrate import solve_ivp def flat_system(t, z, r_ddot): """ 定义个假想的二阶系统,并计算所需的控制输入u。 参数: t (float): 时间点 z (array_like): 当前状态 [y, y_dot] r_ddot (function): 所需加速度的时间依赖函数 返回: dzdt (list): 导数值列表 [dy_dt, d2y_dt2] """ y, y_dot = z # 假设r是我们的平坦输出 r = lambda tau: np.sin(0.5 * tau) # 设定个示例轨迹 dr_dt = lambda tau: 0.5 * np.cos(0.5 * tau) d2r_dt2 = lambda tau: -0.25 * np.sin(0.5 * tau) # 计算所需控制输入u u = d2r_dt2(t) + 2*dr_dt(t)**2 - r_ddot(t) return [y_dot, u] # 初始条件 z_initial = [0, 0] # 解决ODE问题 sol = solve_ivp(lambda t, z: flat_system(t, z, lambda t: 0), [0, 10], z_initial, dense_output=True) t_vals = np.linspace(0, 10, 100) z_vals = sol.sol(t_vals) print(z_vals.T[-1]) # 输出最终状态 ``` 此代码模拟了种情形下如何运用微分平坦原则去操控某个简单动力学模型的行为模式。 #### Matlab中的实现案例 考虑到引用材料提到的内容,在Matlab环境中也可以采用相似的方法来进行更为具体的工程实践操作。例如,可以参照如下伪码框架进步开发适合具体应用场景下的解决方案[^3]: ```matlab % 初始化参数 syms t; r = sin(0.5*t); % 平坦输出设定为例正弦波形式 rdot = diff(r,t); rddot = diff(rdot,t); % 构造状态空间映射关系 x1 = ... ; % 表达成r及其次级衍生物的关系 x2 = ... ; u = ... ; % 数值求解部分省略... ```
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

慕羽★

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值