K-Means聚类make_moons数据

K-Means聚类make_moons数据

  1. 题目要求: Sklearn中的make_moons方法生成数据,用K-Means聚类并可视化。输出三大指标如:ACC = 0.755, NMI = 0.1970, ARI = 0.2582。
  2. 代码示例
import matplotlib.pyplot as plt
import seaborn as sns;sns.set()
from sklearn.datasets import make_moons
from sklearn.cluster import KMeans
from sklearn.metrics import accuracy_score
from sklearn.metrics import normalized_mutual_info_score
from sklearn.metrics import adjusted_rand_score

fig = plt.figure(1)
plt.subplot(1,2,1)#一行一列
x1, y1 = make_moons(n_samples=400, noise=0.1)
plt.title('make_moons function')
plt.scatter(x1[:, 0], x1[:, 1], marker='o',s=15, c=y1,cmap='viridis')
plt.subplot(1,2,2)#一行两列
kmeans = KMeans(n_clusters=2)#2个聚类中心
kmeans.fit(x1)
y_kmeans = kmeans.predict(x1)
plt.scatter(x1[:, 0], x1[:, 1], c=y_kmeans, s=15,cmap='viridis')

##三大指标
acc=accuracy_score(y1,y_kmeans)
nmi=normalized_mutual_info_score(y1,y_kmeans)
ari=adjusted_rand_score(y1,y_kmeans)
print("ACC=",acc)
print("NMI=",nmi)
print("ARI=",ari)

plt.show()

  1. 输出示例
    在这里插入图片描述
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值