matlab BP神经网络入门

本文介绍了如何在MATLAB中使用内置工具箱学习和构建BP神经网络。内容涉及神经网络的图形化结构、数据划分、训练算法(Levenberg-Marquardt algorithm)以及训练过程的监控,如迭代次数、时间和表现。此外,还提到了验证检查和性能图表,帮助理解网络训练状态和回归分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最近开始试着用matlab来学习BP神经网络,它里面内置的工具函数非常好用,而且有一个很不错的工具箱可用来分析。这里说一下工具箱的组成和使用。

 

 

1. Neural Network

图形化的结构,这里是2输入,1输出,中间两个隐藏层,每层5个结点

 

2. Algorithms

Data Division:数据部分,这里是随机

Training:训练算法 这里是莱文贝格-马夸特方法(

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值