Google Earth Engine ——1958-2020年TerraClimate 全球陆地表面每月气候和气候水平衡的数据集

TerraClimate: Monthly Climate and Climatic Water Balance for Global Terrestrial Surfaces, University of Idaho

TerraClimate is a dataset of monthly climate and climatic water balance for global terrestrial surfaces. It uses climatically aided interpolation, combining high-spatial resolution climatological normals from the WorldClim dataset, with coarser spatial resolution, but time-varying data from CRU Ts4.0 and the Japanese 55-year Reanalysis (JRA55). Conceptually, the procedure applies interpolated time-varying anomalies from CRU Ts4.0/JRA55 to the high-spatial resolution climatology of WorldClim to create a high-spatial resolution dataset that covers a broader temporal record.

Temporal information is inherited from CRU Ts4.0 for most global land surfaces for temperature, precipitation, and vapor pressure. However, JRA55 data is used for regions where CRU data had zero climate stations contributing (including all of Antarctica, and parts of Africa, South America, and scattered islands). For primary climate variables of temperature, vapor pressure, and precipitation, the University of Idaho provides additional data on the number of stations (between 0 and 8) that contributed to the CRU Ts4.0 data used by TerraClimate. JRA55 was used exclusively for solar radiation and wind speeds.

TerraClimate additionally produces monthly surface water balance datasets using a water balance model that incorporates reference evapotranspiration, precipitation, temperature, and interpolated plant extractable soil water capacity. A modified Thornthwaite-Mather climatic water-balance model and extractable soil water storage capacity data was used at a 0.5° grid from Wang-Erlandsson et al. (2016).

TerraClimate 是全球陆地表面每月气候和气候水平衡的数据集。它使用气候辅助插值,将 WorldClim 数据集的高空间分辨率气候法线与较粗的空间分辨率、但来自 CRU Ts4.0 和日本 55 年再分析 (JRA55) 的时变数据相结合。从概念上讲,该过程将来自 CRU Ts4.0/JRA55 的内插时变异常应用于 WorldClim 的高空间分辨率气候学,以创建涵盖更广泛时间记录的高空间分辨率数据集。

大多数全球陆地表面的温度、降水和蒸汽压力的时间信息继承自 CRU Ts4.0。但是,JRA55 数据用于 CRU 数据具有零气候站贡献的地区(包括整个南极洲、非洲部分地区、南美洲和分散的岛屿)。对于温度、蒸气压和降水等主要气候变量,爱达荷大学提供了额外的数据,涉及对 TerraClimate 使用的 CRU Ts4.0 数据做出贡献的站点数量(0 到 8 之间)。 JRA55 专门用于太阳辐射和风速。

TerraClimate 还使用水平衡模型生成月度地表水平衡数据集,该模型结合了参考蒸散量、降水、温度和内插植物可提取土壤水容量。修改后的 Thornthwaite-Mather 气候水平衡模型和可提取的土壤蓄水能力数据在 Wang-Erlandsson 等人的 0.5° 网格中使用。 (2016)。

Dataset Availability

1958-01-01T00:00:00 - 2020-12-01T00:00:00

Dataset Provider

University of California Merced

Collection Snippet

ee.ImageCollection("IDAHO_EPSCOR/TERRACLIMATE")

Resolution

2.5 arc minutes

Bands Table

NameDescriptionMin*Max*UnitsScale
aetActual evapotranspiration, derived using a one-dimensional soil water balance model03140mm0.1
defClimate water deficit, derived using a one-dimensional soil water balance model04548mm0.1
pdsiPalmer Drought Severity Index-431734180.01
petReference evapotranspiration (ASCE Penman-Montieth)04548mm0.1
prPrecipitation accumulation07245mm0
roRunoff, derived using a one-dimensional soil water balance model012560mm0
soilSoil moisture, derived using a one-dimensional soil water balance model08882mm0.1
sradDownward surface shortwave radiation05477W/m^20.1
sweSnow water equivalent, derived using a one-dimensional soil water balance model032767mm0
tmmnMinimum temperature-770387°C0.1
tmmxMaximum temperature-670576°C0.1
vapVapor pressure014749kPa0.001
vpdVapor pressure deficit01113kPa0.01
vsWind-speed at 10m02923m/s0.01

* = Values are estimated

影像属性:

NameTypeDescription
statusString'provisional' or 'permanent'

数据说明:

The data set is in the public domain as licensed under the Creative Commons Public Domain (CC0) license. 

数据引用:

Abatzoglou, J.T., S.Z. Dobrowski, S.A. Parks, K.C. Hegewisch, 2018, Terraclimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015, Scientific Data 5:170191, doi:10.1038/sdata.2017.191

代码:

var dataset = ee.ImageCollection('IDAHO_EPSCOR/TERRACLIMATE')
                  .filter(ee.Filter.date('2017-07-01', '2017-08-01'));
var maximumTemperature = dataset.select('tmmx');
var maximumTemperatureVis = {
  min: -300.0,
  max: 300.0,
  palette: [
    '1a3678', '2955bc', '5699ff', '8dbae9', 'acd1ff', 'caebff', 'e5f9ff',
    'fdffb4', 'ffe6a2', 'ffc969', 'ffa12d', 'ff7c1f', 'ca531a', 'ff0000',
    'ab0000'
  ],
};
Map.setCenter(71.72, 52.48, 3);
Map.addLayer(maximumTemperature, maximumTemperatureVis, 'Maximum Temperature');

 

### 关于 TerraClimate 辐射数据集的详细信息 TerraClimate 是一种高分辨率气候数据集,主要提供降水、温度其他气象变量的数据。然而,在当前版本中,TerraClimate 并未直接包含辐射相关的变量[^1]。 如果需要获取辐射相关数据,可以考虑其他专门针对地表太阳辐射设计的数据集,例如引用中的全球高分辨率(3小时,10公里)地表太阳辐射数据集 (1983-2018)[^2]。该数据集提供了详细的辐射信息,并具有较高的时间空间分辨率。 以下是有关如何处理使用这些数据的一些指导: #### 数据源的选择 由于 TerraClimate 不支持辐射数据,推荐使用以下替代方案: - **全球高分辨率地表太阳辐射数据集**:此数据集的时间范围为 1983 至 2018 ,覆盖全球区域,其空间分辨率为约 10 公里(经纬度网格划分),时间分辨率为每三小时一次[^2]。 #### 获取方法 对于上述提到的地表太阳辐射数据集,可以通过官方网站或其他公开资源下载完整的栅格文件集合。具体操作如下: - 访问官网并定位到对应时间段内的产品页面; - 下载所需份或者月份的具体影像文件; - 利用 GIS 软件加载 TIFF 文件查看属性值分布情况以及地理参考信息等内容。 #### 处理工具建议 为了更好地分析此类大数据量的空间数据,可采用专业的遥感图像处理软件或编程库来进行批量读取与计算工作。常用工具有 ArcGIS Pro, QGIS Python 的 GDAL 库等。 ```python from osgeo import gdal # 打开TIFF文件 dataset = gdal.Open('path_to_radiation_data.tif') # 查看基本信息 print(f"Driver: {dataset.GetDriver().ShortName}/{dataset.GetDriver().LongName}") print(f"Size is {dataset.RasterXSize} x {dataset.RasterYSize} x {dataset.RasterCount}") # 提取波段数据作为NumPy数组 band = dataset.GetRasterBand(1) array = band.ReadAsArray() ``` 以上代码片段展示了如何利用GDAL模块打开一个标准GeoTIFF格式的卫星遥感影像,并将其转换成适合进一步科学运算的形式——即 NumPy 数组结构。 #### 注意事项 当涉及到跨不同平台间传输大量二进制编码形式存储起来的地图资料时,请务必确认目标环境已安装好相应依赖项以便顺利完成解析过程;另外也要注意版权归属问题以免触犯法律风险。
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此星光明

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值