Google Earth Engine(GEE) ——多源遥感影像(S1/S2和地形数据)监督和非监督分类(以随机森林和Kmeans聚类)案例

本文介绍如何使用Google Earth Engine(GEE)进行多源遥感影像(如S1/S2和地形数据)的监督和非监督分类。通过随机森林和K-means聚类方法,分析像素以进行土地覆盖分类。内容涵盖图像采样、训练数据处理、模型构建和应用,涉及的主要函数包括sample、train、sampleRegions和ee.Classifier.smileRandomForest等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文主要是利用准备好的影像和一景准备好的样本点来进行分析,在以下脚本中,我们将探索将像素分类为专题类的技术。 我们将使用只有五个类别(城市、农业、水、沙和湿地)的简化图例。 图像分类的两种主要技术是无监督分类和监督分类。 在第一种情况下,图像的像素根据它们的光谱相似性被分为许多类(数量类最初可能不对应于土地覆盖类)。 相似的像素属于同一类,尽管没有主题信息(即提供土地覆盖类的名称)。 该技术不需要使用训练数据来构建分类模型。 是在后处理步骤中使用,为每个组定义主题类。 关于有限兴趣区域的示例逐渐使用了越来越多的时间序列数据集:仅 S2和 S1,然后是 S1、S2 和地形(高程和坡度)的组合图像。

这里的多源遥感影像就是我们利用SAR和光谱影像以及地形参数以及其它植被指数作为一个多波段影像,多波段单景影像就是我们的多源遥感数据,而其它的就是谁当随机森林和其它监督分类方法,无论是评估土地分类还是其它,方法都一样,变量就是影像波段,所以我们只管添加参数就好了,剩下的就按照监督分类即可。

函数:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此星光明

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值