Google Earth Engine(GEE)——Landsat 8/9 Level 2,Collection 2 LST地表温度(不包含Landsat7之前的数据集)

 不再需要使用 Ermida 的算法计算表面温度。 Landsat Level 2,Collection 2 包含经大气校正的地表反射率和地表温度 (LST)。所有 Collection 2 LST 产品均采用由罗彻斯特理工学院 (RIT) 和美国国家航空航天局 (NASA) 喷气推进实验室 (JPL) 联合开发的单通道算法创建。

前言 – 床长人工智能教程

USGS Landsat 8 Collection 2 Tier 1 TOA Reflectance

Bands Table

NameDescriptionResolutionWavelength
B1Coastal aerosol30 meters0.43 - 0.45 μm
B2Blue30 meters0.45 - 0.51 μm
B3Green30 meters0.53 - 0.59 μm
B4Red30 meters0.64 - 0.67 μm
B5Near infrared30 meters0.85 - 0.88 μm
B6Shortwave infrared 130 meters1.57 - 1.65 μm
B7Shortwave infrared 230 meters2.11 - 2.29 μm
B8Band 8 Panchromatic15 meters0.52 - 0.90 μm
B9Cirrus15 meters1.36 - 1.38 μm
B10Thermal infrared 1, resampled from 100m to 30m30 meters10.60 - 11.19 μm
B11Thermal infrared 2, resampled from 100m to 30m30 meters11.50 - 12.51 μm

 USGS Landsat 8 Collection 2 Tier 1 and Real-Time data Raw Scenes

Bands Table

NameDescriptionResolutionWavelength
B1Coastal aerosol30 meters0.43 - 0.45 μm
B2Blue30 meters0.45 - 0.51 μm
B3Green30 meters0.53 - 0.59 μm
B4Red30 meters0.64 - 0.67 μm
B5Near infrared30 meters0.85 - 0.88 μm
B6Shortwave infrared 130 meters1.57 - 1.65 μm
B7Shortwave infrared 230 meters2.11 - 2.29 μm
B8Band 8 Panchromatic15 meters0.52 - 0.90 μm
B9Cirrus15 meters1.36 - 1.38 μm
B10Thermal infrared 1, resampled from 100m to 30m30 meters10.60 - 11.19 μm
B11Thermal infrared 2, resampled from 100m to 30m30 meters11.50 - 12.51 μm

 USGS Landsat 9 Collection 2 Tier 1 TOA Reflectance

Bands Table

NameDescriptionResolutionWavelength
B1Coastal aerosol30 meters0.43 - 0.45 μm
B2Blue30 meters0.45 - 0.51 μm
B3Green30 meters0.53 - 0.59 μm
B4Red30 meters0.64 - 0.67 μm
B5Near infrared30 meters0.85 - 0.88 μm
B6Shortwave infrared 130 meters1.57 - 1.65 μm
B7Shortwave infrared 230 meters2.11 - 2.29 μm
B8Band 8 Panchromatic15 meters0.52 - 0.90 μm
B9Cirrus15 meters1.36 - 1.38 μm
B10Thermal infrared 1, resampled from 100m to 30m30 meters10.60 - 11.19 μm
B11Thermal infrared 2, resampled from 100m to 30m30 meters11.50 - 12.51 μm

USGS Landsat 9 Collection 2 Tier 1 Raw Scenes

Bands Table

NameDescriptionResolutionWavelength
B1Coastal aerosol30 meters0.43 - 0.45 μm
B2Blue30 meters0.45 - 0.51 μm
B3Green30 meters0.53 - 0.59 μm
B4Red30 meters0.64 - 0.67 μm
B5Near infrared30 meters0.85 - 0.88 μm
B6Shortwave infrared 130 meters1.57 - 1.65 μm
B7Shortwave infrared 230 meters2.11 - 2.29 μm
B8Band 8 Panchromatic15 meters0.52 - 0.90 μm
B9Cirrus15 meters1.36 - 1.38 μm
B10Thermal infrared 1, resampled from 100m to 30m30 meters10.60 - 11.19 μm
B11Thermal infrared 2, resampled from 100m to 30m30 meters11.50 - 12.51 μm

USGS Landsat 7 Collection 2 Tier 1 and Real-Time data Raw Scenes 

Bands Table

NameDescriptionResolutionWavelength
B1Blue30 meters0.45 - 0.52 μm
B2Green30 meters0.52 - 0.60 μm
B3Red30 meters0.63 - 0.69 μm
B4Near infrared30 meters0.77 - 0.90 μm
B5Shortwave infrared 130 meters1.55 - 1.75 μm
B6_VCID_1Low-gain Thermal Infrared 1. This band has expanded dynamic range and lower radiometric resolution (sensitivity), with less saturation at high Digital Number (DN) values. Resampled from 60m to 30m.60 meters10.40 - 12.50 μm
B6_VCID_2High-gain Thermal Infrared 1. This band has higher radiometric resolution (sensitivity), although it has a more restricted dynamic range. Resampled from 60m to 30m.60 meters10.40 - 12.50 μm
B7Shortwave infrared 230 meters2.08 - 2.35 μm
B8Panchromatic15 meters0.52 - 0.90 μm

前言 – 床长人工智能教程

<think>好的,我现在需要帮助用户解答如何使用LANDSAT/LC08/C02/T1_L2数据集进行地表温度反演的问题。首先,我得回忆一下之前提供的引用内容,看看有没有可以直接应用的信息。根据引用[1]和[2],用户提到的ST_B10波段已经处理好了,可以直接用公式B1-273.15转换为摄氏温度。这可能是一个关键点,但用户可能需要更详细的方法步骤。 接下来,我需要确定用户是否了解LST反演的基本流程。通常,地表温度反演包括辐射定标、大气校正、地表比辐射率计算等步骤,但根据引用内容,GEE中的这个数据集可能已经做了部分预处理。所以可能需要简化步骤,直接使用ST_B10。 用户可能希望得到一个分步的教程,包括数据获取、处理、计算以及结果验证等。同时,用户可能需要知道如何应用具体的公式,比如将波段值转换为温度,或者是否需要进一步处理。 考虑到GEE平台的使用,代码示例会很有帮助。用户可能需要JavaScript或Python代码片段,但根据之前的示例,用户可能更倾向于Python。过,GEE主要使用JavaScript,但也可以通过Python API调用。需要确认这一点,但根据引用中的示例,可能提供GEE的JavaScript代码更合适。 另外,需要注意是否需要大气校正,但引用中提到数据集已经经过大气校正,所以可能需要用户自己处理。但可能需要验证这一点,确保ST_B10的正确性。 还需要考虑单位转换,比如开尔文转摄氏度,引用中提到减去273.15,这一点必须准确无误。同时,用户可能想知道如何可视化结果或导出数据,这些步骤也应该包括在内。 最后,生成相关问题,帮助用户深入理解,比如同传感器的处理方法、精度验证方法、应用场景等。确保问题与主题相关,并引导用户进一步探索。</think>### 如何使用LANDSAT/LC08/C02/T1_L2数据集计算地表温度 #### 1. **数据准备** - 在Google Earth EngineGEE)中加载数据集: ```javascript var landsat8 = ee.ImageCollection("LANDSAT/LC08/C02/T1_L2"); ``` - 按时间和区域筛选数据,例如选择2020年夏季中国区域的影像: ```javascript var filtered = landsat8.filterDate(&#39;2020-06-01&#39;, &#39;2020-08-31&#39;) .filterBounds(geometry); // geometry为研究区矢量边界 ``` #### 2. **直接获取地表温度波段** LANDSAT/LC08/C02/T1_L2数据集中的`ST_B10`波段为**预处理后的地表温度数据**(单位为开尔文),引用文献指出可直接通过公式转换为摄氏度[^1]: ```javascript var lst = filtered.select(&#39;ST_B10&#39;).mean().subtract(273.15); ``` #### 3. **可视化与验证** ```javascript // 温度范围设置为0-40°C Map.addLayer(lst, {min:0, max:40, palette:[&#39;blue&#39;,&#39;yellow&#39;,&#39;red&#39;]}, &#39;LST&#39;); // 控制台输出温度统计值 print(&#39;区域温度统计&#39;, lst.reduceRegion({ reducer: ee.Reducer.minMax(), geometry: geometry, scale: 30 })); ``` #### 4. **导出结果(可选)** ```javascript Export.image.toDrive({ image: lst, description: &#39;LST_Export&#39;, scale: 30, region: geometry }); ``` ####
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此星光明

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值