Google Earth Engine(GEE)——监督分类出现ConfusionMatrix (Error) User memory limit exceeded.解决方案

在使用Google Earth Engine进行监督分类时遇到'User memory limit exceeded.'错误。即使数据简化,问题依然存在。文章讨论如何通过调整`stratifiedSample`的参数,如增加`scale`的值来降低分辨率,以避免内存限制错误,并提供了修改代码的建议。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

我正在做监督分类,我得到的错误是’超过了用户内存限制’,但是我的数据已经不是那么复杂了。我把我的inputPropeties导出为一个堆叠的图层,我在一个光栅图层上做分类,我选择了有限的类的数量,但仍然得到这个错误。
我希望得到你的回答。
当我们出现下面的状况应该怎们办?
Resubstitution error matrix:
ConfusionMatrix (Error)
User memory limit exceeded.
Training overall accuracy:
Number (Error)
User memory limit exceeded.
Training kappa accuracy:
Number (Error)
User memory limit exceeded.
Training producer accuracy:
Array (Error)
User memory limit exceeded.
Training Consumer accuracy:
Array (Error)
User memory limit exceeded.
在这里插入图片描述
这里我们可以选择一种方案就是降低分辨率:
stratifiedSample(numPoints, classBand, region, scale, projection, seed, classValues, classPoints, dropNulls, tileScale, geometries)
Extracts a stratified random sample of points from an image. Extracts the specified number of samples for each distinct value discovered within the ‘classBand’. Returns a FeatureCollection of 1 Feature per extracted point, with each feature having 1 property per band in the input image. If there are less than the specified number of samples available for a given class value, then all of the points for that class will be included. Requires that the classBand contain integer values.
从图像中提取分层随机样品。 提取“ classband”中发现的每个不同值的指定数量的样本。 返回每个提取点1个特征的特征汇编,每个功能在输入图像中每个频段具有1个属性。 如果给定类值的示例数量少于指定数量的示例,则将包括该类的所有要点。 要求class带包含整数值。
Arguments:
this:image (Image):
The image to sample.

numPoints (Integer):
The default number of points to sample in each class. Can be overridden for specific classes using the ‘classValues’ and ‘classPoints’ properties.

classBand (String, default: null):
The name of the band containing the classes to use for stratification. If unspecified, the first band of the input image is used.

region (Geometry, default: null):
The region to sample from. If unspecified, the input image’s whole footprint is used.

scale (Float, default: null):
A nominal scale in meters of the projection to sample in. Defaults to the scale of the first band of the input image.

修改这个参数:将30转化为100或者更多来调试
projection (Projection, default: null):
The projection in which to sample. If unspecified, the projection of the input image’s first band is used. If specified in addition to scale, rescaled to the specified scale.

seed (Integer, default: 0):
A randomization seed to use for subsampling.

classValues (List, default: null):
A list of class values for which to override the numPoints parameter. Must be the same size as classPoints or null.

classPoints (List, default: null):
A list of the per-class maximum number of pixels to sample for each class in the classValues list. Must be the same size as classValues or null.

dropNulls (Boolean, default: true):
Skip pixels in which any band is masked.

tileScale (Float, default: 1):
A scaling factor used to reduce aggregation tile size; using a larger tileScale (e.g. 2 or 4) may enable computations that run out of memory with the default.

geometries (Boolean, default: false):
If true, the results will include a geometry per sampled pixel. Otherwise, geometries will be omitted (saving memory).

Returns: FeatureCollection

var EG_LC = ee.FeatureCollection("projects/ee-samartarek440/assets/EG_LC"),
    ROI = ee.FeatureCollection("projects/ee-samartarek440/assets/Agri2020"),
    EG_LC_tif = ee.Image("projects/ee-samartarek440/assets/EG_LC_tif"),
    Rectangle = 
    /* color: #98ff00 */
    /* shown: false */
    /* locked: true */
    /* displayProperties: [
      {
        "type": "rectangle"
      }
    ] */
    ee.Geometry.Polygon(
        [[[
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此星光明

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值