中国30米年度土地覆盖产品annual China Land Cover Dataset, CLCD

简介:

中国30米年度土地覆盖产品(annual China Land Cover Dataset, CLCD)是基于三十万景Landsat影像,结合现有产品自动稳定样本和目视解译样本生产获得。前言 – 人工智能教程
该数据集基于5463个独立参考样本,产品整体精度为79.31% 。该数据集反映了中国快速的城市化和一系列生态工程,揭示了在气候变化下人类活动对区域地表覆盖的影响。

土地覆盖和土地利用数据是对土地利用状况进行描述和记录的重要依据,其意义和作用包括:

1. 揭示土地利用变化情况。通过对土地覆盖和土地利用数据的监测和分析,可以了解土地利用变化情况,并及时制定相应的规划和政策,加强对土地资源的合理利用和保护。

2. 评估生态环境质量。土地覆盖和土地利用数据可以用来评估生态环境质量,比如农田、林地、草地和城市化地区的分布情况及其变化对生态环境的影响。

3. 监测资源利用情况。土地覆盖和土地利用数据可以用来监测资源的利用情况,比如农田的利用率、水资源的利用情况等,从而提供科学依据来制定资源利用规划。

4. 支持决策制定。土地覆盖和土地利用数据可以为城市规划、土地管理、生态修复等决策提供科学依据,使决策更加精准和有效。

5. 推动可持续发展。土地覆盖和土地利用数据可以为土地资源的可持续利用和保护提供科学依据,促进经济、社会和环境的协调发展。

数据集ID: 

WHU/CLCD

时间范围: 1985年-2020年

范围: 全国

来源: 武汉大学黄昕教授团队

复制代码段: 

var images = pie.ImageCollection("WHU/CLCD")

名称类型无效值空间分辨率时间分辨率描述信息
B1Byte030m时间范围不连续,分别为1985年,1990年至2019年的土地覆盖产品

分类属性

代码土地分类名称R,G,B
1农田250,227,156
2森林68,111,51
3灌木51,160,44
4草地171,211,123
5水体30,105,180
6冰雪166,206,227
7荒地207,189,163
8不透水226,66,144
9湿地40,155,232

date

string

影像时间

 结果

代码:

/*
 加载中国30米年度土地覆盖产品
 */

//加载中国30米年度土地覆盖产品数据
var img = pie.ImageCollection('WHU/CLCD')
    .filterDate('2017-01-01', '2018-01-01')
    .select('B1');
print(img);
//设定颜色预览组合
var visParams = {
    min: 1,
    max: 9,
    palette: ['f5deb3', '008000', 'adff2f',
        '90ee90', '0000ff', '00ffff',
        'ffd700', 'daa520', '808000',]
};
//定位地图中心
Map.setCenter(107.9, 34.2, 3);
//加载影像
Map.addLayer(img, visParams, "img");

参考文献:


Yang, J. and Huang, X.: 30 m annual land cover and its dynamics in China from 1990 to 2019, Earth Syst. Sci. Data. Accepted for publication, 2021

本数据集所有权属于武汉大学黄昕教授团队,可在PIE-Engine平台上免费用于非商业科研及教育活动。

网址推荐

0代码在线构建地图应用

https://invite.mapmost.com/#/login?source_inviter=nClSZANO

机器学习

https://www.cbedai.net/xg 

### 下载 CLCD 土地利用数据的方法 #### 使用 PIE-Engine 平台下载 PIE-Engine 是一个支持大规模遥感数据分析的云计算平台,能够提供多种分辨率的土地利用数据。对于 30 分辨率的 CLCD 数据集,可以通过以下方式获取: - **数据来源**:武汉大学黄昕教授团队制作的中国 30 年度土地覆盖产品 (annual China Land Cover Dataset, CLCD)[^1]。 - **时间范围**:该数据的时间跨度为 1985 至 2019 年。 - **操作流程**: - 注册并登录到 PIE-Engine 官网。 - 导航至“数据集市”,搜索关键词“CLCD”或“土地覆盖”找到对应的数据集。 - 设置感兴趣的研究区域以及所需年份,完成数据裁剪和导出。 #### 利用 Google Earth Engine (GEE) 调用与下载 Google Earth Engine 提供了一个强大的云端计算环境来处理全球尺度的空间数据。目前 GEE 中也已集成最新的 CLCD 数据集,其时间跨度扩展到了 1985 至 2023 年[^2]。 - **代码实现**: 以下是通过 JavaScript 编写的一段脚本用于加载指定时间段内的 CLCD 数据,并将其导出为 GeoTIFF 文件格式保存到用户的 Google Drive 上。 ```javascript // 加载 CLCD 数据集合 var clcdCollection = ee.ImageCollection('projects/sat-io/open-datasets/clcd'); // 筛选特定年份图像 var yearOfInterest = '2023'; // 修改为你感兴趣的年份 var image = clcdCollection.filter(ee.Filter.eq('year', parseInt(yearOfInterest))).first(); // 可视化参数设置 var visParams = { min: 1, max: 10, palette: ['ffbb22','ffff4c','ffffff','ffa500','006400','1c0ccc','0dd1b5','f903fc','cbcbcb'] }; Map.addLayer(image.clip(geometry),visParams,'Landcover '+yearOfInterest); // 将影像导出到谷歌驱动器 Export.image.toDrive({ image:image.select('landcover').clip(geometry), description:'clcd_'+yearOfInterest+'_' + geometry.coordinates.get(0).getInfo().join('_'), scale:30, region:geometry, fileFormat:'GeoTIFF', }); ``` - **注意事项**: - `geometry` 应替换为您实际定义的兴趣区边界几何对象。 - 如果需要批量下载多年度数据,则需循环执行上述代码片段中的筛选部分。 #### 验证与质量控制 无论采用哪种途径取得最终成果文件,在正式投入科研项目之前都建议按照既定标准实施严格的质量检验程序。这通常涉及借助更高清晰度卫星图片辅助判断分类准确性或者开展实地考察校正偏差情况直至满足预设阈值为止(即抽样精度≥90%)[^3]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此星光明

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值