GEE案例——如何sentinel-2影像利用NDWI归一化水体指数进行长时序水域分析(2015-2023年滇池为例)

本文介绍了如何利用Sentinel-2卫星影像和NDWI指数进行长时序水域分析,以滇池为例,涵盖了NDWI的计算方法、影像预处理、阈值分割和时间序列分析,提供了利用`ui.Chart.image.seriesByRegion`函数进行数据分析的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

简介

Sentinel-2是一颗遥感卫星,其提供的高分辨率数据可以广泛应用于环境监测、土地利用和水资源管理等领域。其中,利用归一化水体指数(Normalized Difference Water Index,NDWI)来进行长时序水域分析是一种常见的方法。本文将介绍NDWI的定义和计算方法,并结合Sentinel-2影像的使用,详细说明如何进行长时序水域分析。

首先,我们来看一下NDWI的定义和计算方法。NDWI是一种基于波段反射率的指数,用于估计水体的分布和变化。其计算公式如下:

NDWI = (Green - NIR) / (Green + NIR)

其中,Green代表绿色波段的反射率,NIR代表近红外波段的反射率。这个公式利用了水体和陆地在绿色和近红外波段的反射差异,通过计算两个波段的比值来获得一个归一化指数。

接下来,我们将介绍如何利用Sentinel-2影像进行长时序水域分析。首先,需要选择一系列的Sentinel-2影像数据,这些数据应该覆盖所研究区域的一段时间,以便进行时间序列分析。可以通过官方网站或者开放数据平台下载这些数据。

一般来说,Sentinel-2影像数据包括多个波段,其中包括绿色和近红外波段。通过计算每个影像的NDWI值,可以得到一系列的NDWI影像。这些影像可以用来观察地表水体的空间分布和时间变化。在计算NDWI时,需要注意以下几点&

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此星光明

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值