简介
利用随机森林模型以通过 GEE Python API 输出国家范围内的洪水概率。我使用 Sentinel-1 从已知洪水事件中派生的洪水标签来训练分类器,然后输出概率栅格影像获得训练结果。
洪水事件频繁且普遍,对人类社会和环境造成了巨大的影响。因此,准确预测洪水事件对于减少风险、保护人类生命和财产至关重要。Sentinel-1卫星是欧洲空间局(ESA)的一颗雷达卫星,可以提供高质量的全球覆盖雷达图像,并且具有高时空分辨率。利用Sentinel-1影像进行洪水事件的预测是可能的,下面将介绍这个过程。
首先,为了正确预测洪水事件,我们需要训练一个机器学习模型。机器学习模型采用监督学习方法,使用历史洪水事件的地面观测数据作为输入特征,并将相应的Sentinel-1雷达图像作为目标变量。输入特征可以包括地形数据、降雨数据、土地利用数据等。目标变量是Sentinel-1图像中显示洪水的像素。
接下来,我们需要准备训练数据集。训练数据集应该包括历史洪水事件的地面观测数据以及相应的Sentinel-1图像。这些数据可以从地方政府、环境保护组织或其他相关机构获取。为了获得足够的数据量,可以将多个洪水事件的数据合并在一起。
然后,我们需要对Sentinel-1图像进行预处理。首先,我们需要对图像进行校正,以纠正因卫星轨道和地球曲率引起的几何畸变。其次,我们需要进行辐射校正,以消除由大气、地表反射和传感器噪声等因素引起的光照变化。最后&#