GEE案例分析——基于照明条件(Illumination Condition, IC)函数的Landsat C01单景影像的地形校正

本文详细介绍了地形校正的重要性、原理及应用,特别关注Landsat Collection 1的地形校正。通过使用照明条件(Illumination Condition, IC)函数,对Landsat影像进行校正,以消除地形引起的误差。文章展示了地形校正前后的影响,并讨论了Patrick Burns和Matt Macander提出的IC函数在颜色评估中的作用。" 113412734,10551934,使用RDKit与SVR预测logP,"['化学信息学', '机器学习', 'Python库', '支持向量机', '数据预处理']
摘要由CSDN通过智能技术生成

地形校正

地形校正是遥感和地理信息系统(GIS)领域中的一个术语,指的是对遥感数据进行的一种处理过程,目的是消除由于地形引起的误差,以便更准确地表示地表特征。这种校正是必要的,因为遥感数据(如卫星或航空摄影)通常是在不同的角度和高度上获取的,而地球表面是不规则的,这会导致数据中的畸变和误差。

以下是地形校正的一些具体解释:

1. **原理**:地形校正的基本思想是利用已知的地形信息(如数字高程模型,DEM)来调整原始遥感图像,以模拟如果从正上方垂直拍摄时的图像。

2. **方法**:地形校正可以通过多种方法实现,包括但不限于:
   - **辐射校正**:调整图像数据以补偿地形引起的光照变化。
   - **几何校正**:调整图像的几何形状,以反映真实的地表特征。

3. **目的**:地形校正的主要目的是为了提高数据的可用性和准确性,使得分析结果更加可靠。

4. **应用**:地形校正在多种应用中都非常重要,包括但不限于:
   - **土地覆盖分类**:确保不同地形上的相同类型土地被正确分类。
   - **林业管理**:评估不同地形上的森林覆盖和健康状况。
   - **水文学**:分析流域特征

以下是使用Google Earth Engine (GEE) 对Landsat-8多幅影像进行批量地形校正的代码示例: ```javascript // Load Landsat 8 surface reflectance data. var collection = ee.ImageCollection('LANDSAT/LC08/C01/T1_SR') .filterDate('2019-01-01', '2019-12-31') .filterBounds(geometry) .select(['B4', 'B3', 'B2', 'B5', 'B6', 'B7']); // Function to apply terrain correction to a single image. var applyTerrainCorrection = function(image) { // Load elevation data. var elevation = ee.Image('USGS/SRTMGL1_003'); // Compute terrain correction parameters. var tc = ee.Terrain.hillShadow(elevation, image.metadata('sunAzimuth'), image.metadata('sunElevation')); // Apply terrain correction to the image. var corrected = image.addBands(tc.select(['hillshade'])); return corrected; }; // Apply terrain correction to the image collection. var correctedCollection = collection.map(applyTerrainCorrection); // Export the corrected images to Google Drive. Export.image.toDrive({ image: correctedCollection, description: 'Landsat8_terrain_corrected', folder: 'GEE_exports', scale: 30, region: geometry }); ``` 在上述代码中,我们首先加载了Landsat 8表面反射率数据,并使用`filterDate()`和`filterBounds()`函数对数据进行筛选。然后,我们定义了一个名为`applyTerrainCorrection`的函数,该函数接受一个影像作为输入,并返回已进行地形校正影像。在函数中,我们加载了SRTM高程数据,并使用`ee.Terrain.hillShadow()`函数计算了地形校正参数。最后,我们将地形校正应用到了影像中,并使用`addBands()`函数地形校正参数作为新波段添加到了影像中。 接下来,我们使用`map()`函数将`applyTerrainCorrection`函数应用到整个影像集合中,并将结果存储在名为`correctedCollection`的变量中。最后,我们使用`Export.image.toDrive()`函数地形校正后的影像导出到Google Drive中。 需要注意的是,上述代码中的`geometry`变量需要根据实际情况进行设置,以指定影像的空间范围。此外,如果需要,还可以调整`scale`参数以控制导出影像的空间分辨率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此星光明

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值