慧天卓特:东南亚基于多源遥感的干旱、土壤水分及洪灾、植被指数、火灾监测和空气质量监测分析

概述

亚洲的东南部地理位置具有特殊的意义,是亚洲纬度最低的地区,也处于亚澳之间的过渡地带,属热带季风气候,森林等自然资源丰富,人口稠密,东南亚和南亚地区面临农业生产、环境保护和经济发展的多重挑战,遥感技术可为其农业和环境的监测与管理提供重要的支持。

慧天卓特利用遥感技术可在干旱监测、水资源管理和水灾监测评估、地表植被监测、火灾监测评估、空气质量监测等方面为东南亚和南亚地区提供相应的应用解决方案。

遥感干旱监测

慧天卓特干旱产品基于风云系列卫星观测数据,物理反演地表干旱指数FYDI,对中国及东南亚地区提供逐日4KM分辨率的精准干旱监测,并具备预测预警功能,图1为东南亚及南亚2023年月平均干旱指数分布动态图。许多亚洲国家在2023年经历了有记录以来最热的一年,还出现了干旱、热浪、洪水、暴雨等一系列极端气候状况。进入2024年后,受厄尔尼诺的持续影响,很多亚洲国家仍处于高温干旱中,今年五月,东南亚多国同时遭受旱灾(图2)。印度多地遭热浪袭击,发布高温干旱预警,1400万民众遭受缺水危机。泰国、柬埔寨也遭遇了持续的高温干旱,农作物及水果种植也受到影响,两国榴莲产量受到严重影响。

图1 东南亚及南亚2023年月平均干旱指数动态图

图2 东南亚及南亚2024年5月8日干旱指数分布图

土壤水分及洪灾监测

遥感土壤水分产品能提供每日土壤表层水分信息,其高覆盖和高时效性可在水资源分配和洪灾监测与评估中发挥重要作用。图3为东南亚及南亚2023年5月每日地表土壤水分监测动态图(数据源:SMAP Enhanced L3产品)。

图3 东南亚及南亚每日地表土壤水分监测

(2023年5月)

湄公河流域涵盖多个国家,是一个农业生产密集区,也是自然灾害频发的区域,柬埔寨位于湄公河下游区域。2023年柬埔寨金边区域水体面积的时间序列识别显示(图4),5月受强降水影响,水体面积剧增。进一步,通过识别水体并监测水体面积变化,可生成金边地区水灾概率预测的产品(图5),有助于政府和相关部门制定防灾减灾措施,减少人员和财产损失。

图4 金边市区水体面积按时序统计

 

图5 2023年5月金边市区水体监测及时序动态影像

遥感植被指数监测与评估

可见光遥感波段可识别植被分类和植被健康状况,各类遥感植被指数和植被健康指数可用于评估植被的生长状况,帮助农民和土地管理者及时掌握农作物生长情况,发现病虫害和营养不足的问题,采取相应措施以提高作物产量。利用遥感产品可实现:

  • 大尺度全覆盖监测
  • 高分辨率加密区监测
  • 基于时间序列的监测

东南亚五月中的植被指数(图6)监测显示,东南亚区域整体植被覆盖度较高,缅甸中南部和泰国东部和柬埔寨部分区域的植被覆盖较低。

以不丹为例,从2020年-2024年不丹植被指数空间分布图(图7)不难看出植被覆盖度与地形高度呈现不同分布,即随着地形的升高,植被覆盖度呈现下降的趋势,在不丹北部海拔超过5000米的区域植被覆盖度呈现显著下降的趋势。图8为2020年-2024年不丹植被指数NDVI时序分布,从图中看出NDVI呈现周期变化,且呈现缓慢增长的趋势,表明该区域植被覆盖度呈现逐年增加的态势。每年10-11月植被覆盖度更高,5-9月植被覆盖度较低。

图6 2024年5月12日东南亚植被指数监测

图7 2020年-2024年不丹植被指数空间分布图

图8 2020年-2024年不丹植被指数时序分布

遥感火灾监测与评估

地表可燃物干燥缺水是造成火灾的主要原因之一,基于卫星遥感可对地表植被、干旱和地表水的状况进行反演,作为火险因子,用于火灾风险等级预测。基于卫星遥感的归一化燃烧比指数NBR可用于监测火灾前后的植被变化,以评估火灾的影响和恢复情况。

2024年4月13至14日柬埔寨全国共发生10起火灾事故,21公顷森林被火烧,火灾前后NBR指数变化显著(图9),通过NBR指数变化的差异图(图10),可以估算出火灾面积为0.206平方公里。

图9 火灾前后NBR指数动态变化

图10 火灾面积估算

遥感空气质量监测与评估

遥感大气产品可用于监测大气中的气溶胶、甲醛、一氧化碳、二氧化硫等污染物的浓度,提供空气质量评估和预警信息,对环境保护和公共健康管理具有重要意义。图11为老挝的主要空气污染物含量监测图。

图11 老挝2024年3月19日主要空气污染物含量

小结

全面覆盖

遥感技术通过卫星数据,实现了东南亚地区的大范围覆盖,提供了高时效性和高精度的环境监测信息

多重应用

  • 农业支持:干旱监测、土壤水分管理和植被健康评估,为农业生产和资源管理提供了重要决策支持
  • 环境保护:火灾监测、空气质量监测和生态系统评估,帮助政府和相关部门制定环境保护和应对自然灾害的策略
  • 经济发展:遥感技术为水资源分配、土地利用规划和基础设施建设提供了科学依据,有助于推动区域的可持续经济发展

网址:

慧天干旱监测与预警-首页 (htdrought.com)

下载链接为: https://pan.quark.cn/s/9a27693985af 《基于SSM的JSP招聘网》是一款功能丰富的在线招聘平台,主要面向普通游客、求职者、企业管理员四种用户角色,提供了样化的服务与管理功能。该系统采用SSM(Spring、SpringMVC、MyBatis)技术栈开发,确保了系统的稳定性与高效性。以下是对系统功能模块及其技术实现的介绍。 对于普通游客,系统提供职位浏览功能。游客可以查看平台上的各种招聘信息,如职位描述、工作职责、薪资待遇等。这需要后台数据库对招聘信息进行有效存储检索。在SSM框架中,SpringMVC负责处理HTTP请求,将数据传递给Spring服务层进行业务逻辑处理,MyBatis作为持久层工具,执行SQL查询并将结果映射为Java对象。 求职者注册成为平台用户后,可进行职位收藏投递。收藏的职位信息会保存在个人中心,方便随时查看。职位投递功能涉及用户个人信息与简历的提交,需要系统具备用户认证授权机制,可通过Spring Security或Apache Shiro实现。此外,系统可能采用AJAX技术进行异步操作,如即时刷新收藏夹状态,以提升用户体验。 企业用户可在系统中发布职位、查看求职者简历。发布职位时,需进行表单验证数据合法性检查,SpringMVC的控制器可协同前端校验库(如Hibernate Validator)完成。查看简历时,企业可对求职者进行筛选评价,这要求数据库设计合理,以便快速查询分析求职者信息。 管理员负责管理平台运行,包括用户管理、职位审核、系统设置等。管理员模块通常包含后台管理界面,通过SpringMVC的模型视图解析器模板引擎(如Thymeleaf或FreeMarker)生成动态页面。同时,日志记录异常处理必不可少,Spring框架提供了强大的日志AOP支持,可方便实现这些功
### 关于森林火灾遥感监测与评估的技术方法 #### 数据的选择 遥感技术在森林火灾监测中的核心在于选择合适的传感器数据。例如,在北美地区的森林大火预测中,通过卫星图像结合支持向量机算法实现了75%的准确率[^1]。而在更广泛的场景下,Landsat Sentinel-2 时间序列光学遥感影像被广泛应用于森林火灾损失情况的监测以及火灾强度分级的任务中[^3]。 #### 图像预处理 为了提高遥感数据分析的有效性准确性,通常需要对原始遥感影像进行一系列预处理操作。这些操作包括但不限于影像过滤、去除云层干扰等。特别是在基于 Landsat Sentinel-2 的研究中,除云处理是一项关键技术环节,能够显著提升后续分析的质量。 #### 特征提取与建模 特征提取是遥感监测的重要组成部分之一。常用的手段有植被指数计算(如NDVI),这有助于区分健康植被与其他地面覆盖物,并进一步用于识别潜在火区或受损区域。此外,针对不同类型的模型需求,可以采用种机器学习算法来完成分类任务。比如斯洛文尼亚案例采用了随机森林决策树算法来进行精准探测;而其他一些项目可能还会尝试神经网络或其他高级方法以获得更高的精度水平。 #### 结果分析与可视化 最后一步是对所得到的数据进行全面的结果统计分析并加以可视化展示。这一过程不仅帮助研究人员更好地理解整个事件的发展趋势及其影响范围大小,同时也为政府机构制定应急响应计划提供了科学依据。卓特公司所提供的服务即涵盖了此类功能模块——它们能够在个环境管理领域发挥作用,其中包括但不限于东南亚及南亚地区的干旱状况监控、水资调配规划等领域内的具体实践应用实例说明了这一点[^2]。 ```python import numpy as np from sklearn.svm import SVC from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score # 假设我们有一个简单的二元分类问题 X = np.random.rand(100, 2) * 100 y = (np.sqrt((X ** 2).sum(axis=1)) < 50).astype(int) # 划分训练集测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 使用SVM构建模型 clf = SVC(kernel='linear') clf.fit(X_train, y_train) # 测试模型性能 predictions = clf.predict(X_test) print(f'Accuracy: {accuracy_score(y_test, predictions)}') ``` 上述代码片段展示了如何使用支持向量机(SVC) 对模拟数据进行简单分类的过程,类似于某些实际应用场景下的初步探索阶段可能会涉及到的内容。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此星光明

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值