摘要
要加强对国家有限水资源的监控和管理,就必须提高灌溉面积测绘的精确度。 本研究比较了谷歌地球引擎平台上的机器学习算法、分类和回归树(CART)、梯度树提升(GTB)、随机森林(RF)和支持向量机(SVM)。 研究使用哨兵-2 多光谱和哨兵-1 合成孔径雷达卫星数据对 2021/22 年灌溉季节的小农灌溉区进行分类。 根据投入和农业生态对方法的准确性进行了评估。 通过纳入月度合成孔径雷达和植被指数数据,准确度得到了提高。 在不同的农业生态区和输入条件下,RF 被认为是一致的分类器,其总体准确度(OA)为 0.89,其次是 SVM 和 GTB,在流域层面的 OA 分别为 0.88 和 0.87。 CART 算法的 OA 值(0.86)和 Kappa 系数(0.82)最低。 归一化差异植被指数 (NDVI)、土壤调整植被指数 (SAVI)、归一化差异红边 (NDRE) 和归一化差异水指数 (NDWI) 被认为对绘制灌溉区地图非常重要。
本研究旨在比较 GEE 机器学习分类算法(CART、GTB、RF 和 SVM),使用高分辨率 Sentinel-2 和 Sentinel-1 SAR 图像绘制埃塞俄比亚西北部山区流域 2021/22 年灌溉季节的小规模灌溉面积图。