GEE案例:基于entinel-2 和 Sentinel-1 SAR 图像绘制埃塞俄比亚青尼罗河上游山区流域小农灌溉区分类分析

摘要

要加强对国家有限水资源的监控和管理,就必须提高灌溉面积测绘的精确度。 本研究比较了谷歌地球引擎平台上的机器学习算法、分类和回归树(CART)、梯度树提升(GTB)、随机森林(RF)和支持向量机(SVM)。 研究使用哨兵-2 多光谱和哨兵-1 合成孔径雷达卫星数据对 2021/22 年灌溉季节的小农灌溉区进行分类。 根据投入和农业生态对方法的准确性进行了评估。 通过纳入月度合成孔径雷达和植被指数数据,准确度得到了提高。 在不同的农业生态区和输入条件下,RF 被认为是一致的分类器,其总体准确度(OA)为 0.89,其次是 SVM 和 GTB,在流域层面的 OA 分别为 0.88 和 0.87。 CART 算法的 OA 值(0.86)和 Kappa 系数(0.82)最低。 归一化差异植被指数 (NDVI)、土壤调整植被指数 (SAVI)、归一化差异红边 (NDRE) 和归一化差异水指数 (NDWI) 被认为对绘制灌溉区地图非常重要。

本研究旨在比较 GEE 机器学习分类算法(CART、GTB、RF 和 SVM),使用高分辨率 Sentinel-2 和 Sentinel-1 SAR 图像绘制埃塞俄比亚西北部山区流域 2021/22 年灌溉季节的小规模灌溉面积图。

技术流程

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此星光明

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值