从0开始学GEE python——从 Sentinel-5P 获取、处理和可视化特定时间段和地理区域内的 SO₂ 数据。通过样本、统计计算和插值(反距离加权(IDW))

从 Sentinel-5P 获取、处理和可视化特定时间段和地理区域内的 SO₂ 数据。通过样本、统计计算和插值(反距离加权(IDW))

简介

地球引擎中的反距离加权(IDW)函数是基于巴索等人(1999 年)所描述的方法。 以反向距离衰减因子(gamma)的形式添加了一个额外的控制参数。 其他参数包括要内插的属性的平均值和标准偏差,以及要内插的最大范围距离。 下面的示例创建了一个甲烷浓度插值表面,以填补原始栅格数据集的空间空白。 该特征集合是通过对两周甲烷综合数据采样生成的。

代码解释

这段 Python 代码使用 Google Earth Engine (GEE) 和 geemap 库来分析和可视化特定区域和时间段内的二氧化硫 (SO₂) 水平。以下是对代码每个部分的详细解释:

导入库

import ee
import geemap
  • ee: 这是 Earth Engine API,允许访问卫星影像和地理空间数据。
  • geemap: 这个库提供了一种在 Jupyter 笔记本中可视化地理空间数据的简单方法。

初始化 Earth Engine

try:
    ee.Initialize()
except Exception as e:
    ee.Authenticate()
    ee.Initialize()
  • 这段代码尝试初始化 Earth Engine API。如果失败(例如由于未认证),则会提示进行认证,然后再次初始化。

加载 SO₂ 数据

SO2 = ee.ImageCollection("COPERNICUS/S5P/OFFL/L3_SO2") \
    .select('SO2_column_number_density') \
    .filterDate('2019-08-01', '2019-08-15') \
    .mean() \
    .rename('SO2')
  • ee.ImageCollection: 加载 Sentinel-5P 的第3级 SO₂ 数据。
  • .select('SO2_column_number_density'): 选择特定的 SO₂ 密度波段。
  • .filterDate('2019-08-01', '2019-08-15'): 将数据过滤到指定的日期范围内。
  • .mean(): 计算所选日期内的 SO₂ 平均水平。
  • .rename('SO2'): 将结果图像重命名为 ‘SO2’。

定义感兴趣区域 (AOI)

aoi = ee.Geometry.Polygon(
    [[[-95.68487605978851, 43.09844605027055],
      [-95.68487605978851, 37.39358590079781],
      [-87.96148738791351, 37.39358590079781],
      [-87.96148738791351, 43.09844605027055
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此星光明

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值