从 Sentinel-5P 获取、处理和可视化特定时间段和地理区域内的 SO₂ 数据。通过样本、统计计算和插值(反距离加权(IDW))
简介
地球引擎中的反距离加权(IDW)函数是基于巴索等人(1999 年)所描述的方法。 以反向距离衰减因子(gamma)的形式添加了一个额外的控制参数。 其他参数包括要内插的属性的平均值和标准偏差,以及要内插的最大范围距离。 下面的示例创建了一个甲烷浓度插值表面,以填补原始栅格数据集的空间空白。 该特征集合是通过对两周甲烷综合数据采样生成的。
代码解释
这段 Python 代码使用 Google Earth Engine (GEE) 和 geemap
库来分析和可视化特定区域和时间段内的二氧化硫 (SO₂) 水平。以下是对代码每个部分的详细解释:
导入库
import ee
import geemap
ee
: 这是 Earth Engine API,允许访问卫星影像和地理空间数据。geemap
: 这个库提供了一种在 Jupyter 笔记本中可视化地理空间数据的简单方法。
初始化 Earth Engine
try:
ee.Initialize()
except Exception as e:
ee.Authenticate()
ee.Initialize()
- 这段代码尝试初始化 Earth Engine API。如果失败(例如由于未认证),则会提示进行认证,然后再次初始化。
加载 SO₂ 数据
SO2 = ee.ImageCollection("COPERNICUS/S5P/OFFL/L3_SO2") \
.select('SO2_column_number_density') \
.filterDate('2019-08-01', '2019-08-15') \
.mean() \
.rename('SO2')
ee.ImageCollection
: 加载 Sentinel-5P 的第3级 SO₂ 数据。.select('SO2_column_number_density')
: 选择特定的 SO₂ 密度波段。.filterDate('2019-08-01', '2019-08-15')
: 将数据过滤到指定的日期范围内。.mean()
: 计算所选日期内的 SO₂ 平均水平。.rename('SO2')
: 将结果图像重命名为 ‘SO2’。
定义感兴趣区域 (AOI)
aoi = ee.Geometry.Polygon(
[[[-95.68487605978851, 43.09844605027055],
[-95.68487605978851, 37.39358590079781],
[-87.96148738791351, 37.39358590079781],
[-87.96148738791351, 43.09844605027055