简介
用于城市研究的 GLObal 建筑高度(UT-GLOBUS)
德克萨斯大学--用于城市研究的 GLObal 建筑高度(UT-GLOBUS)数据集提供了全球 1200 多个城市的建筑高度和城市冠层参数(UCPs)。 该数据集将开放源空间测高(ICESat-2 和 GEDI)和粗分辨率城市冠层高程数据与机器学习模型相结合,以估算建筑物级别的信息。 数据集包括单个建筑多边形,其高度属性以米为单位,适合使用地理信息系统平台进行可视化。 UCP 以二进制文件格式提供,与天气研究和预报(WRF)预处理系统兼容。 UT-GLOBUS的主要目的是为从城市到街道尺度的建模应用提供一个数据集,特别是为WRF-Urban模型中的多层UCM推导UCP,以及为SOLWEIG模型提供建筑物高度。
主要特征和细节 建筑物高度: 以矢量文件形式提供,包含单个建筑多边形和高度属性(单位:米)。 城市冠层参数 (UCP): 以与 WRF 预处理系统兼容的二进制文件格式提供。 UCP 包括平面面积分数 (λp)、建筑物表面与平面面积比 (λb)、区域平均建筑物高度 (ha),以及 5 米二进制尺寸的建筑物高度柱状图。 空间分辨率: 建筑高度以 30 米的空间分辨率计算。 UCP 使用面积为 1 平方公里的 300 米滑动核进行计算。 数据来源: 结合了空间测高数据(ICESat-2 和 GEDI)、日本宇宙航空研究开发机构 ALOS/PRISM 近全球立体 DSM 数据、世界住区足迹 (WSF) 3-D 数据集以及 OpenStreetMap (OSM)、谷歌和微软的建筑物足迹数据。 机器学习: 使用随机森林模型预测建筑高度,该模型根据美国六个城市的激光雷达数据进行训练。 验证: 使用美国六个城市的激光雷达数据进行的验证表明,UT-GLOBUS 得出的建筑物高度的均方根误差(RMSE)为 9.1 米。 对 1 平方公里网格单元内的平均建筑高度(包括汉堡和悉尼的数据)进行验证后发现,均方根误差为 7.8 米。 数据访问: 数据集可在 Zenodo 上访问。 该数据集包括矢量文件格式的建筑物高度、WRF 预处理系统兼容二进制文件格式的 UCP 以及城市覆盖矢量文件。
代码
//Sample code for a city
var table = ee.FeatureCollection("projects/sat-io/open-datasets/UT-GLOBUS/peoria");
// Set the map center and zoom
Map.setCenter(-89.60, 40.73, 17);
// Get the current map bounds
var bounds = ee.Geometry.Rectangle(Map.getBounds());
// Filter the feature collection to the bounds
var filteredTable = table.filterBounds(bounds);
// Calculate minimum and maximum heights
var ht_min = filteredTable.aggregate_min('height');
var ht_max = filteredTable.aggregate_max('height');
// Define a color palette as an Earth Engine List
var palette = ee.List([
'#1f77b4', '#aec7e8', '#ff7f0e', '#ffbb78',
'#2ca02c', '#98df8a', '#d62728', '#ff9896',
'#9467bd', '#c5b0d5'
]);
// Assign colors based on height
var colorFeatures = filteredTable.map(function(feature) {
var height = feature.getNumber('height');
var min = ee.Number(ht_min);
var max = ee.Number(ht_max);
// Normalize the height to [0, 1]
var normalizedHeight = height.subtract(min).divide(max.subtract(min));
// Map the normalized height to one of the palette indices
var paletteIndex = normalizedHeight.multiply(palette.length().subtract(1)).floor();
// Clamp the palette index to valid bounds
var clampedIndex = paletteIndex.min(palette.length().subtract(1)).max(0);
// Get the corresponding color from the Earth Engine List
var color = palette.get(clampedIndex);
return feature.set('style', {color: color, width: 2});
});
// Apply the styles and add to the map
var styledTable = colorFeatures.style({styleProperty: 'style'});
Map.addLayer(styledTable, {}, 'Palette Colored Table');
结果
引用
Kamath, H.G., Singh, M., Malviya, N. et al. GLObal Building heights for Urban Studies (Ut-GLOBUS) for city- and street- scale urban simulations: Development and first
applications. *Sci Data* **11**, 617 (2024). https://doi.org/10.1038/s41597-024-03719-w
Kamath, H., Singh, M., Malviya, N., Martilli, A., He, L., Aliaga, D., He, C., Chen, F., Magruder, L., Yang, Z.-L., & Niyogi, D. (2024). GLObal Building heights for Urban Studies
(UT-GLOBUS) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.11156602
许可
数据集预处理
将 gpkg 格式的数据集转换为与地球引擎兼容的格式。 在某些情况下,城市被分为多个部分,我们尝试创建一个合并的特征集合。 我们编写了自定义代码来自动完成这一过程,并在合并完成后逐步删除重复的部分。 由于地球引擎方面的摄取失败,原始收集的 1200 个城市中只有 1088 个能够被摄取。 我想创建一个应用程序,让用户选择一个城市,点击并获取高度信息。
本文采用知识共享署名 4.0 国际许可协议进行许可。 提供者:Kamath, H.G., Singh, M., Malviya, N. et al 2024 编辑:GEE Kamath, H.G., Singh, M., Malviya, N. 等人 2024 在 GEE 中进行了编辑: Samapriya Roy 关键词 建筑覆盖率、建筑高度、城市形态学、机器学习 最近更新于 GEE: 2025-01-25
网址推荐
知识星球
机器学习
干旱监测平台
慧天干旱监测与预警-首页https://www.htdrought.com/https://www.htdrought.com/https://www.htdrought.com/