数据集说明
开放式建筑物 2.5D 时空数据集包含跨度为 8 年(2016-2023 年)的年度数据,其中包括建筑物存在、零星建筑物数量和建筑物高度,覆盖面积约 5 800 万平方公里。该数据集是利用 "哨兵-2 "卫星任务提供的公开低分辨率图像制作的,该图像重访时间约为 5 天,覆盖范围遍及全球。由此产生的数据集的有效空间分辨率为 4 米,相当于使用单帧 4 米分辨率图像的高分辨率模型所能达到的分辨率。开放式建筑物 2.5D 时空数据集可在非洲、南亚、东南亚、拉丁美洲和加勒比地区使用。
数据波段
像素大小
4 米
波段
名称 单位 最小值 最大值 说明
building_fractional_count 0 0.0216
用于派生给定地理区域内建筑物数量的源数据。请参阅随附的示例脚本。
building_height 米 0 100
相对于地形的建筑物高度,范围为 [0 米, 100 米]。
building_presence 0 1
模型置信度值(即模型对像素属于建筑物的置信度)在 [0.0, 1.0] 范围内。请注意,模型置信度值未经过校准,也就是说,如果某个像素的模型置信度为 0.8,并不意味着建筑物存在的实际可能性为 80%。因此,置信度值只能用于对像素进行相对排名(例如阈值化)。此外,模型置信度可能会因地理位置和时间而异,具体取决于云层覆盖率、图像未对齐等多种因素。
使
数据用途
开放式建筑物 2.5D 时空数据集的潜在用途包括
城市化: 该数据集的时间方面允许用户研究城市和住区随时间的演变。这对于了解哪些地方需要增加基础设施投资至关重要。
环境科学: 有关建设速度的信息有助于用户了解人类活动如何影响自然资源。
人口分布图: 可以利用该数据集制作人口分布图,其中包括不同时间戳的建筑物高度,为国家和地方人口普查的规划和验证提供重要信号。
公共卫生规划: 数据集的新鲜度和建筑物高度信息可为疫苗接种活动规划或旨在改善医疗服务的政策提供信息。
人道主义援助和灾害响应: 该数据集可提供新鲜、准确的建筑物估算数据,包括建筑物高度,从而更好地估算受灾地区受影响人口的规模。
使用Google Earth Engine下载Google Open Buildings 2.5D Temporal数据集
一、脚本简介
本脚本用于从Google的Open Buildings 2.5D Temporal数据集中下载高分辨率(0.5米)的建筑数据。该数据集提供了建筑数量、高度和存在情况等信息,广泛应用于城市规划、灾害响应和基础设施管理等领域。
二、脚本功能
- 下载3个波段:建筑数量(
fractional_building_count
)、建筑高度(building_height
)和建筑存在概率(building_presence
)。 - 每个波段分别导出为单独的GeoTIFF文件。
- 支持指定年份和感兴趣区域(AOI,例如内罗毕)进行数据下载。
- 由于数据分辨率较高,可能会下载多个图像瓦片。
三、数据集信息
数据集名称:Open Buildings Temporal V1
数据集地址:Open Buildings Temporal V1
数据集描述:该数据集基于Sentinel-2影像生成,覆盖非洲、南亚、东南亚、拉丁美洲和加勒比地区,提供2016-2023年每年的建筑数据,空间分辨率为4米(影像分辨率为0.5米)。数据集包含建筑数量、建筑高度和建筑存在概率等信息。
四、代码实现
(一)定义年份和感兴趣区域
// 定义感兴趣的年份
var year = 2023;
// 定义感兴趣区域(以葡萄牙里斯本附近区域为例)
var geometry = ee.Geometry.Polygon(
[[[-9.3603515625, 38.91703381047962],
[-9.3603515625, 38.436734248948085],
[-8.8330078125, 38.436734248948085],
[-8.8330078125, 38.91703381047962]]], null, false);
// 定义AOI(在运行脚本前,请在GEE编辑器中定义此变量)
var aoi = geometry;
(二)访问数据集
// 访问Open Buildings 2.5D Temporal数据集
var imageCollection = ee.ImageCollection('GOOGLE/Research/open-buildings-temporal/v1');
(三)筛选数据
// 筛选指定年份和AOI内的数据
var latestImage = imageCollection
.filterBounds(aoi) // 确保数据与AOI相交
.filter(ee.Filter.calendarRange(year, year, 'year')) // 筛选指定年份的数据
.sort('system:time_start', false) // 按时间降序排序
.first(); // 获取最新的影像
(四)定义感兴趣波段
// 定义感兴趣的波段名称
var bandNames = ['fractional_building_count', 'building_height', 'building_presence'];
(五)导出数据
// 遍历每个波段并分别导出为GeoTIFF文件
bandNames.forEach(function(bandName, index) {
var bandImage = latestImage.select(index).clip(aoi); // 选择波段并裁剪为AOI范围
Export.image.toDrive({
image: bandImage, // 导出的影像
description: 'export_' + bandName + '_' + year, // 导出描述
folder: 'GEE_Assets', // Google Drive中的文件夹名称(可根据需要更改)
fileNamePrefix: bandName + '_' + year, // 文件名前缀
scale: 0.5, // 数据集的原生分辨率(0.5米)
region: aoi, // 导出区域
maxPixels: 1e12, // 允许的最大像素数
});
});
五、运行脚本
- 打开Google Earth Engine代码编辑器。
- 将上述代码复制并粘贴到代码编辑器中。
- 根据需要修改
year
和aoi
变量,指定感兴趣的年份和区域。 - 点击运行按钮,开始下载数据。
- 下载的GeoTIFF文件将保存到Google Drive的指定文件夹中。
六、注意事项
- 由于数据分辨率较高,下载过程可能需要较长时间。
- 如果AOI较大,可能会生成多个GeoTIFF文件。
- 数据集的原生分辨率为0.5米,但实际有效分辨率为4米。
- 数据集的建筑存在概率值是未校准的,仅可用于相对比较。
通过本脚本,您可以轻松下载Google Open Buildings 2.5D Temporal数据集中的高分辨率建筑数据,用于各种地理空间分析和应用。
全部代码
var geometry = ee.Geometry.Point(
[31.549876545106667, 30.011531513347673]); // New Cairo, Egypt
var col = ee.ImageCollection('GOOGLE/Research/open-buildings-temporal/v1');
/**
* Adds building presence and height layers for a given timestamp.
* @param {number} millis Timestamp in milliseconds.
*/
function addLayers(millis) {
// Create a mosaic of tiles with the same timestamp.
var mosaic = col.filter(ee.Filter.eq('system:time_start', millis)).mosaic();
var year = new Date(millis).getFullYear();
Map.addLayer(
mosaic.select('building_presence'), {max: 1},
'building_presence_conf_' + year);
Map.addLayer(
mosaic.select('building_height'), {max: 100}, 'building_height_m_' + year,
/*shown=*/ false);
};
// Get latest 2 years
var ts = col.filterBounds(geometry)
.aggregate_array('system:time_start')
.distinct()
.sort()
.getInfo()
.slice(-2);
ts.forEach(addLayers);
Map.centerObject(geometry, 14);
其目标是为从事造福社会项目的组织(如政府组织、非营利组织、商业组织)提供支持,如促进可持续发展、灾害响应和改善公共医疗服务等。
GEE APP链接:
https://mmeka-ee.projects.earthengine.app/view/open-buildings-temporal-dataset
希望这篇博客能帮助您更好地理解和使用Google Earth Engine中的Open Buildings 2.5D Temporal数据集!