CARVE:AMSR-E 和 SSM/I 观测到的 2003-2014 年阿拉斯加北方和北极地区每日解冻状态

CARVE: Daily Thaw State of Boreal and Arctic Alaska from AMSR-E and SSM/I, 2003-2014

简介

该数据集提供阿拉斯加和北极北方陆地表面状态的每日 10 公里分辨率地图,包括冻结、融化和解冻状态。这些数据来自 2003 年至 2014 年先进微波扫描辐射计(AMSR-E)和特殊传感器微波成像仪(SSM/I)的被动微波辐射计观测数据。数据产品与北极水库碳脆弱性实验(CARVE)期间进行的科学数据收集工作重叠。


数据产品是使用时间序列奇异性分类器生成的,该分类器可检测时间序列数据中与土壤或积雪冻融期间发生的地表水文剧烈变化相关的不连续变化或边缘。分类器使用连续小波变换和多尺度分析,对来自频率通道组合的光谱梯度亮度温度进行分析,以识别和区分融雪时间、无雪季节长度和地表再冻结。融雪是通过 K a 波段观测亮度温度的昼夜变化确定的。冻融是通过 K 和 K a 波段观测值之间的梯度以及 C 和 X 波段观测值(如有)来确定的。


该数据集包含 15 个年度每日陆地表面状态的 NetCDF 文件 (*.nc) 和 15 个相应地图图像 (*.png) 的配套文件 (*.zip)。

摘要

Table 1. Variables in the AMSR-E data files

Variable nameUnitsDescription
timedaysDays since 1970-01-01
freeze_melt_thaw0: snow/frozen; 1: snowmelt; 2: snow-free/thawedCombined diurnal difference snowmelt and freeze/thaw state from spectral slope 36.5V-18.7V GHz
freeze_thaw_hf0: frozen, 1: thawedFreeze/thaw state from spectral slope 36.5V-18.7V GHz (X- and C-band algorithm)
freeze_thaw_lf0: frozen, 1: thawedFreeze/thaw state from spectral slope 10.7V-6.9V GHz (Ka- and K-band algorithm)
latdegrees northlatitude coordinate
londegrees eastlongitude coordinate
snow_melt0: dry snow/thawed land, 1: snowmeltSurface state, diurnal difference classifier

Table 2. Variables in the SSM/I data files

Variable nameUnitsDescription
timedaysDays since 1970-01-01
freeze_melt_thaw0: snow/frozen; 1: snowmelt; 2: snow-free/thawedCombined diurnal difference snowmelt and freeze/thaw state from spectral slope 37.0V-19.35V GHz
freeze_thaw0: frozen, 1: thawedFreeze/thaw state from spectral slope 37.0V-19.35V GHz (X- and C-band algorithm)
latdegrees northlatitude coordinate
londegrees eastlongitude coordinate
snow_melt0: dry snow/thawed land, 1: snowmeltSurface state, diurnal difference classifier 

代码

!pip install leafmap
!pip install pandas
!pip install folium
!pip install matplotlib
!pip install mapclassify
 
import pandas as pd
import leafmap
 
url = "https://github.com/opengeos/NASA-Earth-Data"
df = pd.read_csv(url, sep="\t")
df
 
leafmap.nasa_data_login()
 
 
results, gdf = leafmap.nasa_data_search(
    short_name="CARVE_Land_Thaw_State_1383",
    cloud_hosted=True,
    bounding_box=(-168.11, 58.84, -131.75, 71.56),
    temporal=("2013-08-12", "2015-11-13"),
    count=-1,  # use -1 to return all datasets
    return_gdf=True,
)
 
 
gdf.explore()
 
#leafmap.nasa_data_download(results[:5], out_dir="data")

网址推荐

 知识星球

知识星球 | 深度连接铁杆粉丝,运营高品质社群,知识变现的工具 (zsxq.com)https://wx.zsxq.com/group/48888525452428

机器学习

https://www.cbedai.net/xg 

干旱监测平台

慧天干旱监测与预警-首页https://www.htdrought.com/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此星光明

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值