GEE案例——连续退化检测算法(Continuous Degradation Detection,CODED):归一化差异分数指数 (NDFI)

本文介绍了连续退化检测(CODED)算法,一种基于谷歌地球引擎(GEE)的森林退化监测方法。CODED利用大地遥感卫星数据时间序列分析监测森林退化,特别强调了归一化差异分数指数(NDFI)在识别退化森林中的作用。文章详细阐述了算法的预处理、森林分类、变化检测等步骤,并提供了不同版本的CODED实现指南。CODED旨在检测低强度森林干扰,通过NDFI变化检测森林退化,尤其适用于区分森林转换和轻微退化事件。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

需求

我想知道是否有人能提供有关归一化差异分数指数 (NDFI) 计算的手册或书籍。

我已经阅读了 "巴西亚马逊地区毁林和森林退化的十年大地遥感卫星分类"、"大地遥感卫星时间序列植被指数在毁林监测中的表现 "和 "结合光谱和空间信息绘制选择性采伐和森林火灾造成的树冠破坏图 "等文章。然而,他们介绍的方法只是部分的,或者过于复杂,难以复制。因此,我想知道是否有人知道如何在谷歌地球引擎中进行计算。

简介

连续退化检测 (CODED)

CODED Continuous Degradation Detection是一种利用大地遥感卫星数据监测低强度森林扰动的算法。该算法基于之前在连续土地覆被监测(Zhu 和 Woodcock,2014 年)和使用光谱非混合模型进行热带退化监测(Souza 等人,2013 年)方面的开发成果,并建立在谷歌地球引擎处理和数据存储系统之上。CODED 旨在为基于样本的退化森林估算创建分层。

CODED 设计用于使用 30 米大地遥感卫星数据。在运行该算法之前,有必要创建一个多维数据堆栈。数据堆栈包含所有可用的大地遥感卫星数据,或者在地球引擎实施中,包含每月的合成数据。

CODED 是一种利用大地遥感卫星数据时间序列分析监测森林转换和退化的算法。该算法基于之前在连续土地覆被监测[1]和利用光谱非混合模型绘制热带退化地图[2]方面的开发成果,并建立在谷歌地球引擎处理和数据存储系统的基础上。该算法最初用 Python 实现,但需要大量数据存储和计算资源来处理海量数据。因此,CODED 被移植到 Javascript 语言中,以便于大面积使用。

CODED 项目背后的动机是开发一种方法,除了区分森林砍伐和退化之外,还能成功识别低强度的森林干扰。虽然最近的科技进步极大地提高了我们绘制高强度森林开垦图的能力[3],但还没有一种方法被证明在识别退化方面同样可靠[4]。尽管如此,据估计,退化造成的碳排放量是砍伐森林造成的碳排放量的 40-212%[5-7]。退化事件往往很小、很微妙,而且是暂时的,因此用传统的变化检测方法很难识别[8]。CODED 试图通过持续进行亚像素光谱混合分析来克服其中的一些限制。通过时间序列分析,可以将微妙的变化与云层或云影造成的短暂变化区分开来。然后将多时信息用于土地覆被分类。结果证明,这种方法能够成功地将未导致土地覆被变化或退化的干扰与森林转换区分开来。

虽然 CODED 能够生成可用于多种目的的干扰图,但退化事件的微妙性和临时性意味着遗漏误差可能很大。因此,CODED 在过去被证明是最成功的景观分层方法,然后可用于得出基于样本的退化面积估计值。

预处理


使用标准的 LEDAPS 表面反射率产品,将所有可用的 Landsat 数据转换为表面反射率。首先使用 CFMask 对数据进行云层过滤。

然后,通过线性光谱非混合法对数据进行转换,以表示 Souza 等人 2005 年开发的光谱内含物的分数,此外还有一个自行开发的云内含物。这 5 个内因子是

  • 绿色植被
  • 非光合植被
  • 阴影
  • 土壤
  • 云层

根据 Souza 等人(2005 年)的方法,将末级因子转换为归一化分数退化指数 (NDFI)。NDFI 通常用于突出退化或开垦的森林区域。NDFI 最初是为亚马逊森林监测而设计的。

毁林
联合国粮食及农业组织(粮农组织)通过《联合国气候变化框架公约》(2001 年)[1] 将毁林描述为 "人类直接引起的林地向非林地的转化"。
森林转化
任何导致从森林向另一种土地覆盖物转化的自然或人为干扰。这包括毁林和自然转化,如永久性水涝。
退化
国际上没有公认的退化定义。我们将退化定义为 "任何自然或人为的森林干扰,但不会导致土地植被改变"。干扰可能会导致土地用途的改变,例如原始森林变为经营性森林或部分被采伐,但只要土地覆被的定义仍然是森林,该事件就被视为退化。
森林
我们将森林定义为任何树冠覆盖率超过 20%、树高超过 5 米、主要用途不是城市或农业用地的土地,包括天然或非天然空地,也包括植树造林。
森林干扰
任何对森林造成破坏性损害的短期或长期事件。事件可以是人为的,也可以是自然的。该事件必须有开始和结束时间,而不是趋势(如气候变化导致的长期绿化或物种演替)。
次生林:
联合国粮农组织(2003 年)[2] 将次生林定义为 "在一个时间点或一个较长时期内,由于人为或自然原因对原有森林植被造成重大清除或干扰后,主要通过自然过程再生的森林"。 

森林分类和特征描述

要找到退化或受损的森林,首先必须确定森林的原始状态。一般来说,NDFI 值接近或等于 1 时,表明是森林景观。不过,NDFI 的大小取决于森林的密度。训练期用于确定森林的 "一般 "状态。为了考虑到云层、传感器噪声和其他导致图像间差异的因素,对训练期所有观测数据的每个像素拟合一个回归模型。回归模型由以下部分组成:

  • 常数项,代表整体幅度
  • 正弦和余弦项,代表季节或年内变化
  • 一个噪声项&#
<think>嗯,用户想了解改进的归一化差异水体指数(MNDWI)的遥感影像处理方法及应用。首先,我需要回顾一下MNDWI的基本概念和公式。根据引用[3],MNDWI的计算公式应该是使用绿光波段和短波红外(SWIR)波段的组合,对吧?原来的NDWI是绿光波段和近红外(NIR)波段,但MNDWI改用了SWIR,这样可以减少建筑物和土壤的影响,提高水体的提取精度。 接下来,用户可能需要具体的处理步骤。根据引用[4],处理流程包括数据准备、影像预处理、指数计算、阈值分割、结果优化和应用分析。数据准备需要选择包含绿光和SWIR波段的影像,比如Landsat 8的B3和B6波段。预处理部分,云掩膜和辐射校正都是必须的,这里可能需要参考GEE中的相关函数。 阈值分割的方法,用户提到了大津算法(Otsu)和零阈值法,这在引用[2]里有提到。需要解释这两种方法如何应用,以及它们的优缺点。例如,大津法自动确定最佳阈值,适合大范围监测,而零阈值可能需要手动调整,适用于特定区域。 然后,应用部分需要结合引用中的案例,比如GEE中的应用(引用[2]、[3]、[4]),说明MNDWI在洪水监测、水域变化分析中的作用。还要提到精度评估的指标,如F1分数、Kappa系数,这些在引用[2]中都有涉及。 可能用户在使用过程中会遇到混淆建筑物和土壤的问题,或者云层干扰,这时候需要强调预处理的重要性,比如云掩膜和辐射校正。此外,不同传感器的波段差异也需要考虑,比如Sentinel-2的波段位置可能不同,需要调整公式中的波段编号。 最后,生成相关问题时,要覆盖MNDWI的计算、优化、与其他指数的对比、应用场景以及实际案例,这样用户可以根据问题进一步深入学习。还要确保引用的正确标注,比如引用[3]解释了MNDWI的公式,引用[4]提供了处理流程的例子。</think>### 改进的归一化差异水体指数(MNDWI)遥感影像处理方法及应用 #### 一、MNDWI的定义与公式 改进的归一化差异水体指数(Modified Normalized Difference Water Index, MNDWI)是一种通过优化波段组合来增强水体与背景地物(如建筑物、土壤)区分度的遥感指数。其公式为: $$ \text{MNDWI} = \frac{\text{Green} - \text{SWIR}}{\text{Green} + \text{SWIR}} $$ 其中,$\text{Green}$为绿光波段(如Landsat 8的B3波段),$\text{SWIR}$为短波红外波段(如Landsat 8的B6波段)[^3]。 #### 二、MNDWI处理流程 1. **数据准备** - 选择包含绿光波段和短波红外波段的遥感影像(如Landsat 8/9、Sentinel-2)。 - 在Google Earth Engine(GEE)中加载影像并筛选时间、区域和云量[^4]。 2. **影像预处理** - **云掩膜**:使用QA波段或云检测算法(如Fmask)去除云干扰。 - **辐射校正**:转换为地表反射率,消除大气影响[^4]。 3. **指数计算** - 根据公式计算MNDWI值,例如在GEE中实现: ```javascript var mndwi = image.expression('(Green - SWIR) / (Green + SWIR)', { 'Green': image.select('B3'), // Landsat 8绿光波段 'SWIR': image.select('B6') // Landsat 8短波红外波段 }); ``` 4. **阈值分割** - **零阈值法**:直接以MNDWI > 0作为水体与非水体的分界。 - **大津算法(Otsu)**:自动选择最佳阈值,适用于复杂场景[^2]。 5. **结果优化** - 形态学滤波(如腐蚀、膨胀)去除噪声。 - 结合数字高程模型(DEM)排除阴影干扰。 6. **应用分析** - **水域动态监测**:逐年提取水体范围,分析城市化或气候变化影响。 - **洪水灾害评估**:快速识别洪水淹没区域。 #### 三、MNDWI的优势与局限性 - **优势**: - 相比NDWI,MNDWI通过引入短波红外波段,有效抑制建筑物和土壤的干扰,提升城市水体提取精度[^3]。 - 适用于多源数据(如Sentinel-2、Landsat)。 - **局限性**: - 对深色地物(如阴影)仍可能误判。 - 高浑浊度水体或浅水区可能漏检。 #### 四、实际应用案例 - **GEE平台应用**: - 引用[2]通过ANDWI(类似MNDWI的改进指数)结合大津算法,在WorldView和Sentinel影像中实现水体高精度提取,总体准确率达90%以上。 - 引用[4]展示了逐年批量计算MNDWI并分析水域变化的完整流程。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此星光明

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值