【35分钟掌握金融风控策略19】贷前风控策略详解-4

目录

贷前风控模型体系和模型在策略中的应用

信用模型体系和模型在策略中的应用

申请评分卡模型

收入预测模型

动支模型

融合模型


贷前风控模型体系和模型在策略中的应用

风控过程中需要开发的模型主要包括分类模型、回归模型和聚类模型,这些模型主要是为了解决目标明确的特定问题而构建的。在构建分类模型的过程中,常采用决策树、逻辑斯谛回归、随机森林、GBDT、XGBoost、LightGBM等有监督机器学习算法,通过对成千上万个风控变量进行降维和组合,最终输出针对不同类别的预测概率,为了应用方便,通常会基于特定公式将概率值转换为风险评分;在构建回归模型的过程中,常采用简单线性回归、多元线性回归、岭回归、Lasso回归、指数回归等机器学习算法,通过一些自变量,预测因变量的取值,最终输出结果为具体的预测值;在构建聚类模型的过程中,常用的算法有K-means、DBSCAN、谐聚类、Louvain等机器学习算法,这些算法通常会将相似的或者联系紧密的样本划分到同一类别或同一群体中,聚类的结果将产生一组集合,同一集合中的对象彼此相似,不同集合中的对象彼此相异。

风控模型的全生命周期管理与风控策略类似,包括模型开发、模型部署、模型监控和模型调优内容,上述内容构成了风控模型全生命周期管理的闭环。

贷前风控模型体系主要由信用模型体系和反欺诈模型体系构成,信用模型体系侧重对客户还款能力的评估,反欺诈模型体系侧重对客户还款意愿的评估。风控模型最终产出的结果通常为模型分、具体的预测值、具体的标签值等,这些模型结果只有被风控策略运用才能体现其价值,风控策略通过使用这些模型结果在大大降低策略复杂度的前提下可以更加快速、准确地做
出决策,加快实现风控目标。

在很多金融机构中,风控人员动辄就会说开发了数百个模型,其实,整个风控过程中涉及的模型类别最多几十个,几百个模型是怎么来的呢?答案是在某些模型类别下开发了很多子模型,基于开发的子模型又做了一些融合模型,所以模型数量就上来了。以贷前申请评分卡模型为例,在实操过程中,若针对全量客群只开发一个通用的申请评分卡模型往往是满足不了使用需求的,因为开发的通用模型在不同类别的客群上的效果可能会有显著差异。因此,通常会分产品、渠道、客群、数据源等分别开发子模型,这样一个类别的模型在精细化开发后,可能就有数十个子模型了。在开发了这么多子模型后,如何应用它们呢?子模型既可以在审批策略中被用来对极差客户进行拒绝,又可以被用作自变量来构建融合模型,以便进行风险管控,这样不但可以最大程度地利用已有的数据信息,而且可以通过精细化建模实现精准风控,提升风控的有效性。

信用模型体系和模型在策略中的应用

在贷前模型体系中、常见的模型有申请评分卡模型、收入预测模型、负债预测模型、动支模型、职业预测膜型、融合模型等,其中融合模型比较特殊,它通常是指将已有的各种模型结果作为自变量进行模型的二次拟合而得到的模型。

在贷前,申请评分卡模型、收入预测模型、动支模型、融合模型的应用比较广泛。接下来,我们对这些模型和模型在策略中的应用进行重点说明。

申请评分卡模型

申请评分卡(Application Score Card)模型,即我们常说的A卡,主要为基于客户授信申请时点前一段时间的相关风控数据构建的模型,用来预测客户未来一段时间内违约的可能性。A卡的目标变量通常基于客户表现期内逾期严重性来确定,表现期内逾期超过一定的天数为“坏”,未逾期或者逾期程度较轻为“好”。A卡的最终输出结果通常为模型分,模型分越低,客户资质越差;模型分越高,客户资质越好。

需要说明的是,在构建A卡时,通常会选取授信申请通过且支用,并且有一定风险表现的样本来建模,在建模完成后,会在全量申请样本上应用该模型。因为建模样本的分布和模型应用样本的分布不一致,所以可能会导致模型在全量申请样本上有偏差。因此,为了优化A卡,就不得不提到拒绝推断等建模方法,即把授信申请拒绝的样本进行一定的处理后纳入建模样本范畴用来构建 A卡,但受限于试锚成本等,基于拒绝推断等方法构建A卡并未得到广泛应用。常用的拒绝推断方法有模糊展开法(Fuzzy Augmentation)、扩大法(Augmentation)、分包或者赋值法(Parceling)等。申请评分卡模型在贷前策略中的应用主要有以下两种情况。

  • 1)在授信审批场景,它作为一条策略拦截高风险进件客群。在应用模型分前,通常会基于单维度策略分析方法为模型分找到合适的切分点,切分点及以下的授信申请被拒绝,切分点以上的授信申请被通过。在少数情况下,若模型分不适合开发单维度策略,则可能会和其他变量一起构建多维度策略,以便进行风险拦截。
  • 2)在定额和定价场景,它辅助进行定额和定价。通常来讲,A卡模型分在识别风险时应该是单调且有序的,即对A卡模型分分箱后,低分段分箱对应的客群的违约率高,高分段分箱对应的客群的违约率低。在定额场景,通常会为不同A卡分数段的客户设置对应的风险系数(风险系数通常为该分数段Lift 值的导数,即风险系数=全量客群的违约率/该分数段客群的违约率,A卡模型分对应分箱的分数越高,风险系数值越大),在确定客户的基础额度后,通常会再用基础额度与风险系数的乘积对客户的授信额度进行修正;在定价场景,通常会给予高分数段分箱客群低定价,给予低分数段分箱客群高定价。

收入预测模型

收入预测模型主要基于客户授信申请时点前一段时间的公积金数据、社保数据、房贷数据、车贷数据、消费数据、税务数据等的一种或几种数据构建模型,用来预测客户的收入(若是非经营类信贷产品,则主要预测的是申请人的收入;若是经营类信贷产品,则主要预测的是企业的收入),在完成对客户收入的预测后,最终输出结果可以是收入预测值,也可以是收入预测区间。在预测客户收入时,可以利用多元线性回归等算法进行预测,也可以直接基于业务逻辑进行预测,例如,若知晓个人客户的公积金缴纳金额,则可基于公积金缴纳比例推算客户的收入,又如,若知晓企业纳税金额和税率,则可推算企业收入等。在完成收入预测模型开发后,该模型在贷前策略中的应用主要有以下两种情况。

  • 1)基于客户的收入范围设计差异化的授信审批策略。通常,高收入客群还款能力较强,风险相对较低,在进行授信审批时,可适当提高高收入客群的审批通过率,扩大此类客群的放贷规模。
  • 2)在定额场景,可基于客户的收入预测值确定客户的基础额度。通常来讲,客户的收入越高,给予的基础额度越高;客户的收入越低,给予的基础额度越低。假如我们预测一个客户的月收入是10万元,若基础额度只有5000元,则显然是不合理的,客户会感觉到被轻视,从而出现授信审批通过后不支用的情况。所以,基于客户的收入给予客户合适的基础额度是非常重要和必要的。

动支模型

动支模型主要是基于客户授信申请时点前一段时间的相关风控数据构建的模型,用来预测客户授信通过后短时间内发生支用的概率,即预测客户的资金“饥渴”程度。动支模型的建模样本为授信申请通过的样本,目标变量基于授信通过一段时间内(如7天)是否发生支用确定,模型最终输出结果为动支模型分,模型分越低,表示客户动支意愿越弱,模型分越高,表示客户动支意愿越强。

动支模型主要在定价策略中使用。通常来讲,对于动支模型分较高的客户,可适当给予偏高的定价,因为客户资金“饥渴”程度较高,高定价对客户的支用影响不大;动支模型分较低的客户通常对定价比较敏感,可适当给予偏低的定价,以促使客户支用。
 

融合模型

在实际生产中,贷前融合模型主要是指基于已有的多个模型结果构建的申请评分卡模型,即融合模型的入模变量是其他模型的输出结果。在正常建模时,以逻辑斯谛回归算法为例,一个模型的入模变量往往在10个左右,且人模变量所属的数据维度往往也不多。在建模时,很多维度的数据信息未被使用,这样构建的型通常会有两个缺点:一是模型使用的少数几个变量若出现较大的波动,则模型结果通常也会出现较大的波动,不够稳定;二是模型使用的数据维度不多,包含的数据信息较少,可能会导致模型结果相对来讲不是很精准。在构建融合模型时,使用的是多个模型的结果,这些模型中的每一个通常都涵盖了多个维度的款据信息、最终构建的融合模型使用的数据维度和变量会比较多,若只有某几个变量出现较不的波动,则对整体模型结果影响不会特别大,所以,融合模型的结果相对综合、稳定。同时,因为融合模型使用的数据信息更加全面、所以最终的模型效果通常会更好。

融合模型的建模方法与A卡类似,主要的不同点在于建模使用的变量有所不同。在完成融合模型开发后,该模型在策略中的应用与A卡基本上是一样的,具体可参考A卡在策略中的应用。

print('要天天开心呀')

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

水木流年追梦

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值