常见的刚性体点云配准算法——ICP、point-to-Plane ICP、FPFH、4PCS等

        一转眼已经研三了,从大四开学进入实验室到现在已经整整三年时间,这三年收获了很多,但也有很多遗憾。从开始定下“点云配准”这一方向,一个人也走了很多弯路,在这里记录下自己在对常见的几种配准算法的理解。

开始之前,先介绍一下必要的知识:

1.点云是什么?

        点云是在空间当中存在的三维点的集合。通俗地来讲,图像是由像素(pixel)(每个像素点用p(u,v)表示)组成的,所有的pixel都整齐地排列在平面上。点云是由空间中的点P(x,y,z)组成的,所有的点都可以自由地分布在空间当中。

2.点云数据和RGBD数据说的是同一种数据吗?

        不是的,二者是包含关系,RGBD数据是点云数据的一种。之前一直混淆二者的概念,但点云数据包含很多种:

  • 深度相机采集的RGBD数据             (点云主要来源之一,以微软的Kinect相机为代表,包含彩色信息)
  • 激光相机采集的激光点云数据         (点云的另一主要来源,大规模点云数据通常使用激光相机采集,通常不包含彩色信息)
  • 逆向工程                                          (3D max,Maya等,主要用在动画制作、模型生产等方面)
  • 光度立体、结构光                            (这个算是原理层面的,但实验室有同学在做,因此放在这里)
  • ...

  • 13
    点赞
  • 72
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
ICP (Iterative Closest Point) 是一种常用的点算法,用于将不同视角或不同时间的点数据对齐到同一个坐标系中。下面简要介绍一下ICP算法的代码实现过程。 首先,我们需要加载两个要的点数据。可以使用如PCL(Point Cloud Library)等点处理库,将点数据加载到程序中。然后,我们需要选取一个初始的变换矩阵,作为的初始估计。常用的初始估计可以是单位矩阵。 接下来,我们开始进行迭代的ICP过程。首先,根据当前的变换矩阵,将参考点(source)通过变换矩阵转换到目标点(target)的坐标系中。然后,对于目标点中的每一个点,我们需要在源点中找到与其最近的点。可以使用KD树等数据结构加速最近点查找的过程。 在找到对应点之后,我们通过计算对应点对之间的误差,来评估当前的质量。常用的误差度量可以是欧氏距离等。然后,我们可以使用Kabsch算法等方法,计算出当前的最优刚性变换矩阵,将源点进行刚性变换。 最后,我们需要判断是否满足终止条件。可以定义一个阈值,当误差的变化不大于该阈值时,认为已经达到了收敛。如果满足终止条件,则算法结束,得到最终的结果。如果不满足终止条件,则继续进行下一次迭代,更新变换矩阵。 需要注意的是,ICP算法在处理非刚性变换时,可能会陷入局部最优解。为了避免这种情况,可以使用一些改进的ICP变种算法,如ICP with SVD,GICP等。 以上所述是ICP算法的简单代码实现过程。在实际应用中,还需要考虑到点数据预处理、加速方法、终止条件的选择等因素,以提高算法的效率和质量。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值