追踪导弹

这篇博客介绍了如何使用Unity的Area2D节点创建追踪导弹。通过设置节点、配置纹理和碰撞形状,以及编写脚本来连接body_entered信号和Timer的超时信号,实现导弹跟踪目标的功能。导弹的转向力和转弯半径可以通过调整变量来控制,从而产生平滑的追踪效果。文章还提供了完整的脚本示例和项目文件下载链接。

目录

追踪导弹

问题

解决方案


追踪导弹

问题

你需要一枚 “追踪导弹”–一种会寻找移动目标的炮弹。

解决方案

在这个例子中,我们将使用一个Area2D节点作为炮弹。对于子弹来说,Area是最好的好选择,因为我们需要检测它们何时接触到什么东西。如果你也需要一个会弹跳的子弹,PhysicsBody类型的节点可能是一个更好的选择。

导弹的节点设置和行为与你对 "哑弹 "的设置是一样的。

【无人机】基于改进粒子群算法的无人机路径规划研究[和遗传算法、粒子群算法进行比较](Matlab代码实现)内容概要:本文围绕基于改进粒子群算法的无人机路径规划展开研究,重点探讨了在复杂环境中利用改进粒子群算法(PSO)实现无人机三维路径规划的方法,并将其与遗传算法(GA)、标准粒子群算法等传统优化算法进行对比分析。研究内容涵盖路径规划的多目标优化、避障策略、航路点约束以及算法收敛性和寻优能力的评估,所有实验均通过Matlab代码实现,提供了完整的仿真验证流程。文章还提到了多种智能优化算法在无人机路径规划中的应用比较,突出了改进PSO在收敛速度和全局寻优方面的优势。; 适合人群:具备一定Matlab编程基础和优化算法知识的研究生、科研人员及从事无人机路径规划、智能优化算法研究的相关技术人员。; 使用场景及目标:①用于无人机在复杂地形或动态环境下的三维路径规划仿真研究;②比较不同智能优化算法(如PSO、GA、蚁群算法、RRT等)在路径规划中的性能差异;③为多目标优化问题提供算法选型和改进思路。; 阅读建议:建议读者结合文中提供的Matlab代码进行实践操作,重点关注算法的参数设置、适应度函数设计及路径约束处理方式,同时可参考文中提到的多种算法对比思路,拓展到其他智能优化算法的研究与改进中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值