171116 Keras-Multiple inputs and outputs

# -*- coding: utf-8 -*-
"""
Created on Thu Nov 16 09:05:33 2017

@author: brucelau
"""

from keras.layers import Input, Embedding, LSTM, Dense
from keras.models import Model
import keras

# Headling input: meant to receive sequences of 100 integers, between 1 and 10000

# Note that we can name any layer by passing it a "name" argument
main_input = Input(shape=(100,),dtype='int32',name='main_input')

# This embedding layer will encode the inout sequence
# into a seqience of  dense 512-dimensional vectors.
x = Embedding(output_dim = 512, input_dim = 10000, input_length = 100)(main_input)

# A LSTM will transform the vector sequence into a single vector,
# containing information about the entire sequence
lstm_out = LSTM(32)(x)


# insert an auxiliary loss function which garantee the trainining process
# when the main_loss is very high.
auxiliary_output = Dense(1,activation = 'sigmoid',name='aux_output')(lstm_out)

# Define the auxiliary inout and concatenate the two inputs
auxiliary_input = Input(shape=(5,),name='aux_input')
x = keras.layers.concatenate([lstm_out,auxiliary_input])

# We stack a deep densely-connected network on top
x = Dense(64,activation='relu')(x)
x = Dense(64,activation='relu')(x)
x = Dense(64,activation='relu')(x)

# And finally we add the main logistic regression layer 
main_output = Dense(1,activation='sigmoid',name='main_output')(x)

# Define two inputs and two outputs
model =  Model(inputs=[main_input,auxiliary_input],outputs=[main_output,auxiliary_output])

model.compile(optimizer = 'rmsprop',loss='binary_crossentropy',loss_weights=[1,0.2])
model.fit([headline_data,additional_data],[labels,labels],epochs=50,batch_size=32)
# Define model.compile and model.fit through predefined 'name' parameter
model.compile(optimizer = 'rmsprop',
              loss = {'main_output':'binary_crossentropy',
                      'aux_output':'binary_crossentropy'},
              loss_weights = {'main_output':1.,'aux_output':0.2}
              )

# Add trained it via:
model.fit({'main_input':headline_data,
           'aux_input':additinal_data},
          {'main_output':labels,'aux_output':labels},
          epochs=50,batch_szie=32)


# Visualization
from keras.utils import plot_model
plot_model(model,to_file = 'model.png')

这里写图片描述

当然,我们也可以使用Python建立一个神经网络来实现Uplift model for multiple correlated responses with Low-Rank factorization。 我们可以使用Keras库来建立神经网络模型,并使用TensorFlow库来训练和评估模型。具体步骤如下: 1. 导入所需的库和数据集。 ```python import numpy as np import pandas as pd from keras.models import Model from keras.layers import Input, Dense from keras.optimizers import Adam from sklearn.model_selection import train_test_split # 导入数据集 data = pd.read_csv('data.csv') X = data.drop(['response', 'treatment'], axis=1).values y = data['response'].values t = data['treatment'].values ``` 2. 将数据集分为训练集和测试集。 ```python # 将数据集分为训练集和测试集 X_train, X_test, y_train, y_test, t_train, t_test = train_test_split(X, y, t, test_size=0.2) ``` 3. 定义神经网络模型。 ```python # 定义神经网络模型 input_layer = Input(shape=(X.shape[1],)) hidden_layer_1 = Dense(64, activation='relu')(input_layer) hidden_layer_2 = Dense(32, activation='relu')(hidden_layer_1) output_layer = Dense(1, activation='sigmoid')(hidden_layer_2) model = Model(inputs=input_layer, outputs=output_layer) ``` 4. 编译模型并训练模型。 ```python # 编译模型 model.compile(loss='binary_crossentropy', optimizer=Adam(lr=0.001), metrics=['accuracy']) # 训练模型 model.fit(X_train, y_train, epochs=10, batch_size=32, validation_data=(X_test, y_test)) ``` 5. 预测响应变量的值。 ```python # 预测响应变量的值 y_train_pred = model.predict(X_train) y_test_pred = model.predict(X_test) # 计算控制组和干预组之间的差异 uplift_train = np.mean(y_train_pred[t_train == 1] - y_train_pred[t_train == 0]) uplift_test = np.mean(y_test_pred[t_test == 1] - y_test_pred[t_test == 0]) # 输出结果 print('Train uplift: %.2f' % uplift_train) print('Test uplift: %.2f' % uplift_test) ``` 请注意,这只是一个简单的示例,实际实现可能涉及更多的数据预处理和模型调整。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

GuokLiu

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值