用一个故事讲懂神经网络是如何学会思考的~

图片

正文


大家好,我是bug菌~

神经网络一直是工程师们AI落地路上的一只拦路虎,那么今天就一一个例子形象生动的讲解到底神经网络是怎么工作的。

想象一下,你正在教一个三岁小朋友认识什么是猫。这个过程,恰好揭示了人工智能领域最神奇的技术——神经网络的核心原理。

一个孩子的认猫课

第一步:准备学习材料

你的爸妈给你看了很多图片,每张图片上都告诉你这是不是猫。

  • 输入:一张图片(包含各种特征:尖耳朵、圆眼睛、胡须、毛茸茸、尾巴等)

  • 期望输出:一个简单的答案——“是猫”或“不是猫”

这就是神经网络的训练数据——有输入有标准答案,是学习的基础。

第二步:大脑的初步判断

刚开始,你完全不知道什么特征重要。你可能会瞎猜:

  • “有毛的就是猫!”(于是你把毛绒玩具也当成了猫)

  • “会动的东西就是猫!”(于是小狗跑过去你也叫猫)

  • “有尾巴的就是猫!”(于是猴子你也觉得是猫)

在这个阶段,你对每个特征都赋予了一个 “瞎蒙的重要性”,这个重要性在神经网络里就叫“权重”。

神经元就是你大脑里的“判断小细胞”,它负责接收信息,然后根据自己的“权重”做出微小判断。一开始,这些权重都是乱设的。

第三步:综合决策并犯错

现在,给你看一张兔子的图片。

  1. 输入:兔子(有毛、红眼睛、长耳朵、短尾巴)

  2. 你的大脑开始工作

  • 神经元A:“有毛!+10分!”

  • 神经元B:“红眼睛?-5分!”

  • 神经元C:“长耳朵?没见过,+0分吧”

  • ...把所有神经元的分数加起来

  • 输出:总分数超过了你的“判断门槛”,你大喊一声:“是猫!

  • 结果:你爸妈说:“错!这是兔子!

  • 这个“错”的信号,就是**“误差”“损失”**。

    第四步:吸取教训,调整思路

    你知道自己错了,就会开始反思:

    • “哦,原来光有毛不行,‘有毛’这个特征的权重我得调低一点”

    • 红眼睛好像不是猫的特征,下次看到要大胆地扣分”

    • 长耳朵似乎是兔子的标志,以后看到要特别注意”

    这个根据错误结果,反过来调整每个特征“权重”的过程,就是神经网络最核心的学习机制——反向传播

    第五步:重复学习,越来越准

    你爸妈不断地给你看新的图片(猫、狗、狮子、老虎……),你每次都会:判断 → 犯错 → 调整权重 → 再判断。

    经过成百上千次的练习后,你大脑里的“权重”被调整得越来越精准:

    • “尖耳朵+圆眼睛”权重很高

    • “脸型是三角形”权重很高

    • “有胡须”权重很高

    • “体型大小适中”权重也很高

    最终,你形成了一套非常复杂的、综合性的判断标准。现在即使看到一只你从来没见过的品种的猫,你也能综合这些特征,大概率准确地认出它是一只猫。

    现在,我们把整个故事对应到神经网络的术语上:

    • 神经网络 = 一个虚拟的大脑决策系统

    • 神经元 = 大脑中的一个判断小单元

    • 输入层 = 你的眼睛和耳朵(接收原始信息)

    • 隐藏层 = 你大脑里进行复杂思考、综合判断的过程

    • 输出层 = 你最终说出的答案

    • 权重 = 你对每个特征的重视程度

    • 前向传播 = 从“看到图片”到“说出答案”的整个思考过程

    • 误差/损失 = 你的答案和正确答案的差距

    • 反向传播 = **“吸取教训”**的过程

    • 迭代训练 = **“大量练习”**的过程

    理解了这套机制,你就会明白:现在的AI为什么能够识别人脸、听懂语音、翻译语言、甚至开车下棋。

    它们都不是靠程序员编写C语言那样的if-else“如果...就...”的规则(那样太复杂且不可能完成),而是通过“大量练习 → 犯错 → 吸取教训”来不断优化内部判断标准,最终学会完成复杂任务。

    神经网络不是一个写好的程序,而是一个“练出来”的技能。就像人类的学习一样,在试错中成长,在经验中完善。

    这就是人工智能的本质:用计算机模拟人类学习的过程,让机器获得类似人类的学习能力。

    最后

          好了,今天就跟大家分享这么多了,如果你觉得有所收获,一定记得点个~

    唯一、永久、免费分享嵌入式技术知识平台~

    推荐专辑  点击蓝色字体即可跳转

    ☞  MCU进阶专辑 图片

    ☞  嵌入式C语言进阶专辑 图片

    ☞  “bug说”专辑 图片

    ☞ 专辑|Linux应用程序编程大全

    ☞ 专辑|学点网络知识

    ☞ 专辑|手撕C语言

    ☞ 专辑|手撕C++语言

    ☞ 专辑|经验分享

    ☞ 专辑|电能控制技术

    ☞ 专辑 | 从单片机到Linux

    图片

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

最后一个bug

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值