softmax输出后根据概率分布抽样选取action 代码实现 加权随机算法

numpy实现softmax

def npsoftmax(x, axis=0):
    x = x - x.max(axis=axis, keepdims=True)
    y = np.exp(x)
    return y / y.sum(axis=axis, keepdims=True)

然后根据softmax加权抽样

    def pdsample(self, action):
        n = len(action)
        pre = [0] * n
        pre[0] = action[0]
        for i in range(1,n):
            pre[i] = pre[i-1] + action[i]
        rd = np.random.rand(1) # 均匀分布
        for i in range(n):
            if rd < pre[i]: return i
        return n-1

一个优化:二分查找比较大小,这里略去


方法二:

        probs = self.sess.run(self.acts_prob, {self.s: s})   # 获取所有操作的概率
        return np.random.choice(np.arange(probs.shape[1]), p=probs.ravel())   # return a int
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

真·skysys

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值