常用目标检测算法loss总结(持续更新)

R-cnn,Fast Rcnn

输入层设置

特征输入分别输出到两个并行的全连接层,即传统意义上的,分类+回归

  • cls_score层:分类层,输出K+1维的数组, pi p i 表示是分类还是背景的概率
  • bbox_predict层: 候选框需要调整层,输出4*K维数组,表示属于第K类时应该缩放平移的参数
Loss fuction
  • loss_cls : 对分类进行评估,采用真实分类概率决定: Lcls=logpu L c l s = − l o g p u
  • loss_bbox:对bbox定位进行评估,用于比较真实分类对应的预测参数 tu t u 和真实平移缩放参数为 v v 的差别:
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Kelisita

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值