SLAM学习笔记(二)

本文详细介绍了SLAM中的相机模型,包括单目、双目及RGB-D相机的工作原理,强调了图像在SLAM中的重要性。接着探讨了非线性优化在SLAM中的应用,讲解了最小二乘法、一阶和二阶梯度法以及高斯牛顿法等优化技术。
摘要由CSDN通过智能技术生成

第五讲.相机与图像

 相机将三维世界中的坐标点(单位米)映射到二维图像平面(单位为像素)的过程中能够用一个几何模型进行描述。

单目相机(Mono)的成像过程:

1、世界坐标系下有个固定的点P,世界坐标为P_{w}

2、由于相机在运动,它的运动由R,t或变换矩阵T\in SE(3)描述。P的相机坐标为\tilde{P}_{c}=RP_{w}+t

3、这时的\tilde{P}_{c}的分量为X,Y,Z,把他们投影到归一化平面Z=1上,得到P的归一化坐标:P_{c}=[X/Z,Y/Z,1]^{T}

4、有畸变时,根据畸变参数计算P_{c}发生畸变后的坐标。

5、P的归一化坐标经过内参后,对应到它的像素坐标:P_{uv}=KP_{c}

双目相机模型:

双目相机原理:通过同步采集左右相机的图像,计算图像间视差,以便估计每一个像素的深度。

基线:两个光圈中心的距离。

根据视差可以估计一个像素与相机之间的距离。视差与距离成反比:视差越大,距离越近。

视差本身很难计算。而且只有在图像纹理变化丰富的地方才能计算视差。由于计算量的原因,双目深度估计仍需要使用GPU或者FPGA来实时计算。

RGB-D相机模型:

它能够主动测量每个像素的深度。目前的RGB-D相机按原理可分为两大类:

1、通过红外结构光Structured Light)原理测量像素距离。

2、通过飞行时间Time-of-Flight, ToF)原理测量像素距离。 

RGB-D相机能够实时地测量每个像素的距离。但是使用范围受限。使用红外光进行深度测量的RGB-D相机,任意受到日光或者其他传感器发射的红外光干扰,因此不能在室外使用。在没有调制的情况下,同时使用多个RGB-D相机时也会相互干扰。对于投射材质的物体,因为接收不到反射光,所以无法测量这些点的位置。成本和功耗也较高。

 图像

在数学中,图像可以用一个矩阵来描述,计算机中它们占据 一段连续的磁盘或内存空间,可以用二维数组表示。

在一张灰度图中,每个像素位置(x,y)对应一个灰度值I,一张宽度为w、高度为h的图像数学上可以记为一个函数:

                                        

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值