实验9 人口预测与数据拟合(最小二乘法)

本文探讨了最小二乘法在人口预测中的应用,对比了三次和六次多项式拟合,分析了数据发展趋势,强调了最小二乘法与三次样条插值的区别和侧重点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述
在这里插入图片描述
最小二乘法数学原理请参考:多元函数及其微分法
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
这个在前面的三次样条插值部分已经接触过了。只不过在二者侧重有所不同。
数据插值的部分使用三次样条插值重点是:将所有数据进行分块处理,使曲线变得光滑,且可以避免一些龙格的问题。
最小二叉树重点是:对所有数据直接处理,使曲线对所有已知的数据点进行处理,目的只有使曲线与数据的误差更小,但是随着自定义的经验公式的影响,某些情况下可能会误差理论上对测量的数据小但对现实的情形大,更类似于一般的多项式插值。
在这里插入图片描述
分别拟合3次和6次多项式曲线,并分析该组数据的总体发展趋势。

clear;close all;clc;
x=0:0.1:1;
y=[-0.4471	1.978	3.28	6.16	7.08	7.35	7.66	9.56	9.48	9.3	11.2];
plot(x,y,'k.','markersize',25);% 绘制数据点
p=polyfit(x,y,3);% 针对数据点,计算三次多项式基函数1,x,x^2,x^3的系数
p1=polyfit(x,y,6);% 针对数据点,计算三次多项式基函数1,x,x^2,x^3,x^4,x^5,x^6的系数
t=0:0.01:1.2;
s<
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

从零开始的智障生活

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值