最小二乘法数学原理请参考:多元函数及其微分法
这个在前面的三次样条插值部分已经接触过了。只不过在二者侧重有所不同。
数据插值的部分使用三次样条插值重点是:将所有数据进行分块处理,使曲线变得光滑,且可以避免一些龙格的问题。
最小二叉树重点是:对所有数据直接处理,使曲线对所有已知的数据点进行处理,目的只有使曲线与数据的误差更小,但是随着自定义的经验公式的影响,某些情况下可能会误差理论上对测量的数据小但对现实的情形大,更类似于一般的多项式插值。
分别拟合3次和6次多项式曲线,并分析该组数据的总体发展趋势。
clear;close all;clc;
x=0:0.1:1;
y=[-0.4471 1.978 3.28 6.16 7.08 7.35 7.66 9.56 9.48 9.3 11.2];
plot(x,y,'k.','markersize',25);% 绘制数据点
p=polyfit(x,y,3);% 针对数据点,计算三次多项式基函数1,x,x^2,x^3的系数
p1=polyfit(x,y,6);% 针对数据点,计算三次多项式基函数1,x,x^2,x^3,x^4,x^5,x^6的系数
t=0:0.01:1.2;
s<