自用的变分法与最优控制推导

经典变分法

推导1

推导步骤来自 理论力学3—变分法的核心,欧拉-拉格朗日方程
δ J = δ ∫ a b f ( y , y ′ ) d x = ∫ a b δ f ( y , y ′ ) d x = ∫ a b ( ∂ f ∂ y δ y + ∂ f ∂ y ′ δ y ′ ) d x = ∫ a b ∂ f ∂ y δ y d x + ∫ a b ∂ f ∂ y ′ d d x δ y d x ∫ a b ∂ f ∂ y ′ d d x δ y d x = ∫ a b ∂ f ∂ y ′ d δ y = [ ∂ f ∂ y ′ δ y ] a b − ∫ a b δ y d d x ∂ f ∂ y ′ d x δ J = [ ∂ f ∂ y ′ δ y ] a b + ∫ a b ∂ f ∂ y δ y d x − ∫ a b δ y d d x ∂ f ∂ y ′ d x = ∫ a b ( ∂ f ∂ y − d d x ∂ f ∂ y ′ ) δ y d x \begin{aligned} \delta J&=\delta\int_a^bf(y,y')\text{d}x \\ &=\int_a^b\delta f(y,y')\text{d}x \\ &=\int_a^b\left(\frac{\partial f}{\partial y}\delta y +\frac{\partial f}{\partial y'}\delta y'\right)\text{d}x \\ &=\int_a^b\frac{\partial f}{\partial y}\delta y\text{d}x+\int_a^b\frac{\partial f}{\partial y'}\frac{\text{d}}{\text{d}x}\delta y\text{d}x \\ \int_a^b\frac{\partial f}{\partial y'}\frac{\text{d}}{\text{d}x}\delta y\text{d}x &=\int_a^b\frac{\partial f}{\partial y'}\text{d}\delta y =\left[\frac{\partial f}{\partial y'}\delta y\right]_a^b -\int_a^b\delta y\frac{\text{d}}{\text{d}x}\frac{\partial f}{\partial y'}\text{d}x \\ \delta J&=\left[\frac{\partial f}{\partial y'}\delta y\right]_a^b +\int_a^b\frac{\partial f}{\partial y}\delta y\text{d}x -\int_a^b\delta y\frac{\text{d}}{\text{d}x}\frac{\partial f}{\partial y'}\text{d}x \\ &=\int_a^b\left(\frac{\partial f}{\partial y} -\frac{\text{d}}{\text{d}x}\frac{\partial f}{\partial y'}\right)\delta y\text{d}x \end{aligned} δJabyfdxdδydxδJ=δabf(y,y)dx=abδf(y,y)dx=ab(yfδy+yfδy)dx=abyfδydx+abyfdxdδydx=abyfdδy=[yfδy]ababδydxdyfdx=[yfδy]ab+abyfδydxabδydxdyfdx=ab(yfdxdyf)δydx

∂ f ∂ y − d d x ∂ f ∂ y ′ = 0 \frac{\partial f}{\partial y} -\frac{\text{d}}{\text{d}x}\frac{\partial f}{\partial y'}=0 yfdxdyf=0

d f d x = ∂ f ∂ y d y d x + ∂ f ∂ y ′ d y ′ d x = d d x ∂ f ∂ y ′ d y d x + ∂ f ∂ y ′ d y ′ d x \begin{aligned} \frac{\text{d}f}{\text{d}x}&=\frac{\partial f}{\partial y}\frac{\text{d}y}{\text{d}x} +\frac{\partial f}{\partial y'}\frac{\text{d}y'}{\text{d}x} \\ &=\frac{\text{d}}{\text{d}x}\frac{\partial f}{\partial y'}\frac{\text{d}y}{\text{d}x} +\frac{\partial f}{\partial y'}\frac{\text{d}y'}{\text{d}x} \\ \end{aligned} dxdf=yfdxdy+yfdxdy=dxdyfdxdy+yfdxdy

d d x ( y ′ ∂ f ∂ y ′ − f ) = 0 y ′ ∂ f ∂ y ′ − f = C \frac{\text{d}}{\text{d}x}\left(y'\frac{\partial f}{\partial y'}-f\right)=0 \\ y'\frac{\partial f}{\partial y'}-f=C dxd(yyff)=0yyff=C

推导2

推导步骤来自 两小时搞定变分法
y 0 ( x ) y_0(x) y0(x)为最优函数, y ( x ) y(x) y(x)为其它的函数,令 y ( x ) − y 0 ( x ) = ϵ η ( x ) = δ y ( x ) y(x)-y_0(x)=\epsilon\eta(x)=\delta y(x) y(x)y0(x)=ϵη(x)=δy(x),则

J ( ϵ ) = ∫ a b f ( y ( ϵ ) , y ′ ( ϵ ) , x ) d x = ∫ a b f ( y 0 + ϵ η ( x ) , y 0 ′ + ϵ η ′ ( x ) , x ) d x d J d ϵ = ∫ a b ( ∂ f ∂ y d y d ϵ + ∂ f ∂ y ′ d y ′ d ϵ + ∂ f ∂ x d x d ϵ ) d x = ∫ a b ( ∂ f ∂ y η + ∂ f ∂ y ′ η ′ ) d x = ∫ a b ∂ f ∂ y η d x + ∫ a b ∂ f ∂ y ′ d η = ∫ a b ∂ f ∂ y η d x + [ ∂ f ∂ y ′ ( x ) η ( x ) ] a b + ∫ a b η ( x ) d d x ∂ f ∂ y ′ d x = ∫ a b ( ∂ f ∂ y − d d x ∂ f ∂ y ′ ) η ( x ) d x + [ ∂ f ∂ y ′ ( x ) η ( x ) ] a b \begin{aligned} J(\epsilon)&=\int_a^bf(y(\epsilon),y'(\epsilon),x)\text{d}x \\ &=\int_a^bf(y_0+\epsilon\eta(x),y_0'+\epsilon\eta'(x),x)\text{d}x \\ \frac{\text{d}J}{\text{d}\epsilon} &=\int_a^b\left(\frac{\partial f}{\partial y}\frac{\text{d}y}{\text{d}\epsilon} +\frac{\partial f}{\partial y'}\frac{\text{d}y'}{\text{d}\epsilon} +\frac{\partial f}{\partial x}\frac{\text{d}x}{\text{d}\epsilon}\right)\text{d}x \\ &=\int_a^b\left(\frac{\partial f}{\partial y}\eta +\frac{\partial f}{\partial y'}\eta'\right)\text{d}x \\ &=\int_a^b\frac{\partial f}{\partial y}\eta\text{d}x+\int_a^b\frac{\partial f}{\partial y'}\text{d}\eta \\ &=\int_a^b\frac{\partial f}{\partial y}\eta\text{d}x +\left[\frac{\partial f}{\partial y'(x)}\eta(x)\right]_a^b +\int_a^b\eta(x)\frac{\text{d}}{\text{d}x}\frac{\partial f}{\partial y'}\text{d}x \\ &=\int_a^b\left(\frac{\partial f}{\partial y} -\frac{\text{d}}{\text{d}x}\frac{\partial f}{\partial y'}\right)\eta(x)\text{d}x +\left[\frac{\partial f}{\partial y'(x)}\eta(x)\right]_a^b \end{aligned} J(ϵ)dϵdJ=abf(y(ϵ),y(ϵ),x)dx=abf(y0+ϵη(x),y0+ϵη(x),x)dx=ab(yfdϵdy+yfdϵdy+xfdϵdx)dx=ab(yfη+yfη)dx=abyfηdx+abyfdη=abyfηdx+[y(x)fη(x)]ab+abη(x)dxdyfdx=ab(yfdxdyf)η(x)dx+[y(x)fη(x)]ab

终端时刻固定、终端状态自由

δ J = ∫ a b ( ∂ f ∂ y − d d x ∂ f ∂ y ′ ) δ y d x + ∂ f ∂ y ′ ( b ) δ y ( b ) = 0 \begin{aligned} \delta J&=\int_a^b\left(\frac{\partial f}{\partial y} -\frac{\text{d}}{\text{d}x}\frac{\partial f}{\partial y'}\right)\delta y\text{d}x +\frac{\partial f}{\partial y'(b)}\delta y(b)=0 \end{aligned} δJ=ab(yfdxdyf)δydx+y(b)fδy(b)=0
所以(等号两边都必须等于0的证明见下面的变分预备定理)
∫ a b ( ∂ f ∂ y − d d x ∂ f ∂ y ′ ) δ y d x = ∂ f ∂ y ′ ( b ) δ y ( b ) = 0 \begin{aligned} \int_a^b\left(\frac{\partial f}{\partial y} -\frac{\text{d}}{\text{d}x}\frac{\partial f}{\partial y'}\right)\delta y\text{d}x =\frac{\partial f}{\partial y'(b)}\delta y(b)=0 \end{aligned} ab(yfdxdyf)δydx=y(b)fδy(b)=0
因为 δ y ( b ) \delta y(b) δy(b)不受限,所以
∂ f ∂ y ′ ( b ) = 0 \frac{\partial f}{\partial y'(b)}=0 y(b)f=0

终端时刻自由、终端状态固定

终端时刻自由的一个公式
δ y ( b + d b ) = δ y ( b ) + y ′ ( b ) d b ( 1 − 1 ) \delta y(b+\text{d}b)=\delta y(b)+y'(b)\text{d}b\quad(1-1) δy(b+db)=δy(b)+y(b)db(11)
δ J = ∫ a b + d b f ( y + δ y , y ′ + δ y ′ ) d x − ∫ a b f ( y , y ′ ) d x = ∫ a b δ f ( y , y ′ ) d x + ∫ b d b f ( y + δ y , y ′ + δ y ′ ) d x = ∫ a b ( ∂ f ∂ y − d d x ∂ f ∂ y ′ ) δ y d x + ∂ f ∂ y ′ ( b ) δ y ( b ) + f ( y ( b ) , y ′ ( b ) ) d b \begin{aligned} \delta J&=\int_a^{b+\text{d}b}f(y+\delta y,y'+\delta y')\text{d}x -\int_a^{b}f(y,y')\text{d}x \\ &=\int_a^b\delta f(y,y')\text{d}x+\int_b^{\text{d}b}f(y+\delta y,y'+\delta y')\text{d}x \\ &=\int_a^b\left(\frac{\partial f}{\partial y} -\frac{\text{d}}{\text{d}x}\frac{\partial f}{\partial y'}\right)\delta y\text{d}x +\frac{\partial f}{\partial y'(b)}\delta y(b)+f(y(b),y'(b))\text{d}b \\ \end{aligned} δJ=ab+dbf(y+δy,y+δy)dxabf(y,y)dx=abδf(y,y)dx+bdbf(y+δy,y+δy)dx=ab(yfdxdyf)δydx+y(b)fδy(b)+f(y(b),y(b))db
(补充说明: ∫ x x + d x f ( t ) d t = f ( x ) d x \int_x^{x+\text{d}x}f(t)\text{d}t=f(x)\text{d}x xx+dxf(t)dt=f(x)dx)

∂ f ∂ y ′ ( b ) δ y ( b ) + f ( y ( b ) , y ′ ( b ) ) d b = 0 ( 1 − 2 ) \frac{\partial f}{\partial y'(b)}\delta y(b)+f(y(b),y'(b))\text{d}b=0\quad(1-2) y(b)fδy(b)+f(y(b),y(b))db=0(12)
又因为 δ y ( b + d b ) = δ y ( b ) + y ′ ( b ) d b = 0 \delta y(b+\text{d}b)=\delta y(b)+y'(b)\text{d}b=0 δy(b+db)=δy(b)+y(b)db=0,所以
∂ f ∂ y ′ ( b ) y ′ ( b ) = f ( y ( b ) , y ′ ( b ) ) \frac{\partial f}{\partial y'(b)}y'(b)=f(y(b),y'(b)) y(b)fy(b)=f(y(b),y(b))

终端时刻自由、终端状态自由

将式(1-1)代入(1-2)
∂ f ∂ y ′ ( b ) ( δ y ( b + d b ) − y ′ ( b ) d b ) + f ( y ( b ) , y ′ ( b ) ) d b = 0 ∂ f ∂ y ′ ( b ) δ y ( b + d b ) + ( f ( y ( b ) , y ′ ( b ) ) − ∂ f ∂ y ′ ( b ) ) d b = 0 \begin{aligned} & \frac{\partial f}{\partial y'(b)}(\delta y(b+\text{d}b)-y'(b)\text{d}b)+f(y(b),y'(b))\text{d}b=0 \\ & \frac{\partial f}{\partial y'(b)}\delta y(b+\text{d}b)+\left(f(y(b),y'(b)) -\frac{\partial f}{\partial y'(b)}\right)\text{d}b=0 \\ \end{aligned} y(b)f(δy(b+db)y(b)db)+f(y(b),y(b))db=0y(b)fδy(b+db)+(f(y(b),y(b))y(b)f)db=0
得到
∂ f ∂ y ′ ( b ) = f ( y ( b ) , y ′ ( b ) ) = 0 \begin{aligned} & \frac{\partial f}{\partial y'(b)}=f(y(b),y'(b))=0 \\ \end{aligned} y(b)f=f(y(b),y(b))=0

终端时刻自由、终端状态约束

设约束方程 c ( x ) = 0 c(x)=0 c(x)=0,则约束时满足 δ y ( b + d b ) = δ y ( b ) + y ′ ( b ) d b = c ′ ( b ) d b \delta y(b+\text{d}b) =\delta y(b)+y'(b)\text{d}b=c'(b)\text{d}b δy(b+db)=δy(b)+y(b)db=c(b)db,代入式(1-2)得
∂ f ∂ y ′ ( b ) ( c ′ ( b ) − y ′ ( b ) ) d b + f ( y ( b ) , y ′ ( b ) ) d b = 0 [ ∂ f ∂ y ′ ( c ′ − y ′ ) + f ( y , y ′ ) ] x = b = 0 \begin{aligned} & \frac{\partial f}{\partial y'(b)}(c'(b)-y'(b))\text{d}b+f(y(b),y'(b))\text{d}b=0 \\ & \left[\frac{\partial f}{\partial y'}(c'-y')+f(y,y')\right]_{x=b}=0 \\ \end{aligned} y(b)f(c(b)y(b))db+f(y(b),y(b))db=0[yf(cy)+f(y,y)]x=b=0

极小值原理

下面的推导均可推广到 x x x λ \lambda λ等为向量形式。

哈密顿函数

H ( x , u , λ , t ) = f ( x , u , t ) + λ ( t ) g ( x , u , t ) H(x,u,\lambda,t)=f(x,u,t)+\lambda(t)g(x,u,t) H(x,u,λ,t)=f(x,u,t)+λ(t)g(x,u,t)
系统状态方程为 x ′ = g ( x , u , t ) x'=g(x,u,t) x=g(x,u,t)。定义泛函
J = ∫ a b f ( x , u , t ) + λ ( t ) ( g ( x , u , t ) − x ′ ( t ) ) d t = ∫ a b H ( x , u , λ , t ) d t − ∫ a b λ ( t ) d x ( t ) = ∫ a b H ( x , u , λ , t ) d t + ∫ a b λ ′ ( t ) x ( t ) d t − [ λ ( t ) x ( t ) ] a b δ J = ∫ a b δ H ( x , u , λ , t ) d t + ∫ a b λ ′ ( t ) δ x ( t ) d t − λ ( b ) δ x ( b ) = ∫ a b ( ∂ H ∂ x + λ ′ ) δ x + ∂ H ∂ u δ u d t − λ ( b ) δ x ( b ) \begin{aligned} J&=\int_a^bf(x,u,t)+\lambda(t)(g(x,u,t)-x'(t))\text{d}t \\ &=\int_a^bH(x,u,\lambda,t)\text{d}t-\int_a^b\lambda(t)\text{d}x(t) \\ &=\int_a^bH(x,u,\lambda,t)\text{d}t+\int_a^b\lambda'(t)x(t)\text{d}t-[\lambda(t)x(t)]_a^b \\ \delta J&=\int_a^b\delta H(x,u,\lambda,t)\text{d}t +\int_a^b\lambda'(t)\delta x(t)\text{d}t-\lambda(b)\delta x(b) \\ &=\int_a^b\left(\frac{\partial H}{\partial x}+\lambda'\right)\delta x +\frac{\partial H}{\partial u}\delta u\text{d}t -\lambda(b)\delta x(b) \\ \end{aligned} JδJ=abf(x,u,t)+λ(t)(g(x,u,t)x(t))dt=abH(x,u,λ,t)dtabλ(t)dx(t)=abH(x,u,λ,t)dt+abλ(t)x(t)dt[λ(t)x(t)]ab=abδH(x,u,λ,t)dt+abλ(t)δx(t)dtλ(b)δx(b)=ab(xH+λ)δx+uHδudtλ(b)δx(b)
由变分预备定理得到
∂ H ∂ λ = x ′ ∂ H ∂ x = − λ ′ ∂ H ∂ u = 0 \begin{aligned} & \frac{\partial H}{\partial \lambda}=x' \\ & \frac{\partial H}{\partial x}=-\lambda' \\ & \frac{\partial H}{\partial u}=0 \\ \end{aligned} λH=xxH=λuH=0

加入限制条件

下面开始最优控制,将积分上下限由 ( a , b ) (a,b) (a,b)改为 ( t 0 , t f ) (t_0,t_f) (t0,tf)
末端时刻固定、末端状态约束时,加入末端性能指标 ϕ ( x f ) \phi(x_f) ϕ(xf)极小和末端状态约束条件 ψ ( x f ) = 0 \psi(x_f)=0 ψ(xf)=0
J = ϕ ( x ) + γ ψ ( x ) + ∫ t 0 t f f ( x , u , t ) + λ ( t ) ( g ( x , u , t ) − x ′ ( t ) ) d t δ J = ( ∂ ϕ ∂ x + γ ∂ ψ ∂ x − λ ( t f ) ) δ x ( t f ) + ∫ t 0 t f ( ∂ H ∂ x + λ ′ ) δ x + ∂ H ∂ u δ u d t \begin{aligned} J&=\phi(x)+\gamma\psi(x)+\int_{t_0}^{t_f}f(x,u,t)+\lambda(t)(g(x,u,t)-x'(t))\text{d}t \\ \delta J&=(\frac{\partial\phi}{\partial x} +\gamma\frac{\partial\psi}{\partial x}-\lambda(t_f))\delta x(t_f) +\int_{t_0}^{t_f}\left(\frac{\partial H}{\partial x}+\lambda'\right)\delta x +\frac{\partial H}{\partial u}\delta u\text{d}t \\ \end{aligned} JδJ=ϕ(x)+γψ(x)+t0tff(x,u,t)+λ(t)(g(x,u,t)x(t))dt=(xϕ+γxψλ(tf))δx(tf)+t0tf(xH+λ)δx+uHδudt
横截条件
λ ( t f ) = ∂ ϕ ∂ x ( t f ) + γ ∂ ψ ∂ x ( t f ) \lambda(t_f)=\frac{\partial\phi}{\partial x(t_f)} +\gamma\frac{\partial\psi}{\partial x(t_f)} λ(tf)=x(tf)ϕ+γx(tf)ψ
的矢量形式为
[ λ 1 ( t f ) λ 2 ( t f ) ] = [ ∂ ϕ ∂ x 1 ( t f ) ∂ ϕ ∂ x 2 ( t f ) ] + [ ∂ ψ 1 ∂ x 1 ( t f ) ∂ ψ 2 ∂ x 1 ( t f ) ∂ ψ 1 ∂ x 2 ( t f ) ∂ ψ 2 ∂ x 2 ( t f ) ] [ γ 1 γ 2 ] \left[\begin{matrix} \lambda_1(t_f) \\ \lambda_2(t_f) \end{matrix}\right] =\left[\begin{matrix} \displaystyle\frac{\partial\phi}{\partial x_1(t_f)} \\ \displaystyle\frac{\partial\phi}{\partial x_2(t_f)} \end{matrix}\right] +\left[\begin{matrix} \displaystyle\frac{\partial\psi_1}{\partial x_1(t_f)} & \displaystyle\frac{\partial\psi_2}{\partial x_1(t_f)} \\ \displaystyle\frac{\partial\psi_1}{\partial x_2(t_f)} & \displaystyle\frac{\partial\psi_2}{\partial x_2(t_f)} \end{matrix}\right] \left[\begin{matrix} \gamma_1 \\ \gamma_2 \end{matrix}\right] [λ1(tf)λ2(tf)]= x1(tf)ϕx2(tf)ϕ + x1(tf)ψ1x2(tf)ψ1x1(tf)ψ2x2(tf)ψ2 [γ1γ2]
如果末端状态自由则删除约束条件 ψ ( x f ) = 0 \psi(x_f)=0 ψ(xf)=0。如果末端状态固定,则删除横截条件 λ ( t f ) \lambda(t_f) λ(tf)
(因为末端状态固定时, δ x ( t f ) \delta x(t_f) δx(tf)任意导致横截条件 λ ( t f ) \lambda(t_f) λ(tf)不成立)
如果末端时刻自由,则增加哈密顿函数变化律公式
H ( t f ) = − ∂ ϕ ∂ t f − γ ∂ ψ ∂ t f H(t_f)=-\frac{\partial\phi}{\partial t_f} -\gamma\frac{\partial\psi}{\partial t_f} H(tf)=tfϕγtfψ

限制输入

几个前置证明

变分预备定理证明

  • 证明1:若 h ( x ) h(x) h(x)为任意函数时均有 ∫ a b M ( x ) h ( x ) d x = 0 \int_a^bM(x)h(x)\text{d}x=0 abM(x)h(x)dx=0 M ( x ) ≡ 0 M(x)\equiv0 M(x)0

反证法,若 M ( x ) ≢ 0 M(x)\not\equiv0 M(x)0,因为 h ( x ) h(x) h(x)任意,令 h ( x ) = − M ( x ) ( x − a ) ( x − b ) h(x)=-M(x)(x-a)(x-b) h(x)=M(x)(xa)(xb),则
M ( x ) h ( x ) = − M 2 ( x ) ( x − a ) ( x − b ) M(x)h(x)=-M^2(x)(x-a)(x-b) M(x)h(x)=M2(x)(xa)(xb)
∵ x ∈ [ a , b ] \because x\in[a,b] x[a,b] ∴ M ( x ) h ( x ) ≥ 0 \therefore M(x)h(x)\ge0 M(x)h(x)0,且 ∃ x ∈ ( a , b ) \exist x\in(a,b) x(a,b)使得 M ( x ) h ( x ) > 0 M(x)h(x)>0 M(x)h(x)>0,从而 ∫ a b M ( x ) h ( x ) d x > 0 \int_a^bM(x)h(x)\text{d}x>0 abM(x)h(x)dx>0,假设不成立。

  • 证明2:不存在 M ( x ) M(x) M(x)使得若 h ( x ) h(x) h(x)为任意函数时均有 ∫ a b M ( x ) h ( x ) d x = C ≠ 0 \int_a^bM(x)h(x)\text{d}x=C\neq0 abM(x)h(x)dx=C=0

同理令 h ( x ) = k / M ( x ) h(x)=k/M(x) h(x)=k/M(x),则
∫ a b M ( x ) h ( x ) d x = k ( b − a ) ≢ C \int_a^bM(x)h(x)\text{d}x=k(b-a)\not\equiv C abM(x)h(x)dx=k(ba)C
假设不成立。

可交换性证明

  • 变分和微分

d d x δ y = d d x ( ϵ η ( x ) ) = ϵ d d x η ( x ) δ d d x y = y ′ ( x ) − y 0 ′ ( x ) = η ′ ( x ) \begin{aligned} &\frac{\text{d}}{\text{d}x}\delta y=\frac{\text{d}}{\text{d}x}(\epsilon\eta(x)) =\epsilon\frac{\text{d}}{\text{d}x}\eta(x) \\ &\delta\frac{\text{d}}{\text{d}x}y=y'(x)-y_0'(x)=\eta'(x) \end{aligned} dxdδy=dxd(ϵη(x))=ϵdxdη(x)δdxdy=y(x)y0(x)=η(x)

  • 变分和积分

δ ∫ a b y ( x ) d x = ∫ a b y ( x ) d x − ∫ a b y 0 ( x ) d x = ∫ a b y ( x ) − y 0 ( x ) d x = ∫ a b δ y ( x ) d x \begin{aligned} &\delta\int_a^by(x)\text{d}x=\int_a^by(x)\text{d}x-\int_a^by_0(x)\text{d}x =\int_a^by(x)-y_0(x)\text{d}x=\int_a^b\delta y(x)\text{d}x \end{aligned} δaby(x)dx=aby(x)dxaby0(x)dx=aby(x)y0(x)dx=abδy(x)dx

泛函的拉格朗日乘子法证明

J = ∫ a b f ( y , y ′ ) d x J=\int_a^bf(y,y')\text{d}x J=abf(y,y)dx
若满足约束 g ( y , y ′ ) = 0 g(y,y')=0 g(y,y)=0,则
δ g = ∂ g ∂ y δ y + ∂ g ∂ y ′ δ y ′ = 0 ( 2 − 1 ) δ J = ∫ a b δ f ( y , y ′ ) d x + λ δ g ( y , y ′ ) = 0 ( 2 − 2 ) δ f ( y , y ′ ) = ∂ f ∂ y δ y + ∂ f ∂ y ′ δ y ′ = 0 ( 2 − 3 ) \begin{aligned} & \delta g=\frac{\partial g}{\partial y}\delta y+\frac{\partial g}{\partial y'}\delta y'=0\quad(2-1) \\ & \delta J=\int_a^b\delta f(y,y')\text{d}x+\lambda\delta g(y,y')=0\quad(2-2) \\ & \delta f(y,y')=\frac{\partial f}{\partial y}\delta y+\frac{\partial f}{\partial y'}\delta y'=0\quad(2-3) \\ \end{aligned} δg=ygδy+ygδy=0(21)δJ=abδf(y,y)dx+λδg(y,y)=0(22)δf(y,y)=yfδy+yfδy=0(23)
由(2-1)(2-3)式可得
∂ f ∂ y = − λ ∂ g ∂ y ∂ f ∂ y ′ = − λ ∂ g ∂ y ′ δ f ( y , y ′ ) = ∂ f ∂ y δ y + ∂ f ∂ y ′ δ y ′ = ∂ f ∂ y δ y + ∂ f ∂ y ′ ( − ∂ g ∂ y ∂ g ∂ y ′ ) = ( ∂ f ∂ y + λ ∂ g ∂ y ) δ y \begin{aligned} \frac{\partial f}{\partial y}&=-\lambda\frac{\partial g}{\partial y} \\ \frac{\partial f}{\partial y'}&=-\lambda\frac{\partial g}{\partial y'} \\ \delta f(y,y')&=\frac{\partial f}{\partial y}\delta y +\frac{\partial f}{\partial y'}\delta y' \\ &=\frac{\partial f}{\partial y}\delta y +\frac{\partial f}{\partial y'}(-\frac{\frac{\partial g}{\partial y}}{\frac{\partial g}{\partial y'}}) \\ &=(\frac{\partial f}{\partial y}+\lambda\frac{\partial g}{\partial y})\delta y \\ \end{aligned} yfyfδf(y,y)=λyg=λyg=yfδy+yfδy=yfδy+yf(ygyg)=(yf+λyg)δy
于是可以构造拉格朗日函数
L ( y , y ′ ) = f ( y , y ′ ) + λ g ( y , y ′ ) ∂ L ∂ y = ∂ f ∂ y + λ ∂ g ∂ y \begin{aligned} & L(y,y')=f(y,y')+\lambda g(y,y') \\ & \frac{\partial L}{\partial y}=\frac{\partial f}{\partial y}+\lambda\frac{\partial g}{\partial y} \\ \end{aligned} L(y,y)=f(y,y)+λg(y,y)yL=yf+λyg
需要注意的是,多元函数中 z = f ( x 0 , y 0 ) z=f(x_0,y_0) z=f(x0,y0)是个点,所以 λ \lambda λ是个常数;而 δ y \delta y δy是个函数,所以泛函中的 λ \lambda λ也是个函数。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值