1 ,二元函数 : 几何意义
- 集合意义 :一个曲面
- 定义域 : D 为定义域
- 值域 : M 曲面
2 ,二元函数偏导数 :几何意义
- 偏导数 : 对一个变量的导数
- 例子 :
- 理解 :
1 ,函数 z=f(x,y) 代表曲面
2 ,用 y=y0 截一下,得到一条曲线
3 ,在这条曲线上,对 x 求导,得到的依然是斜率
4 ,本质 : 依然是线的斜率,x 偏导数是针对 x 的斜率
5 ,y 偏导数是针对 y 的斜率
3 ,二元函数偏导数 : 代数运算
- 例子 :
4 ,二元函数方向导数 : 几何理解
- 方向导数 : 多元函数沿任意方向的变化率
- 如图 :
5 ,二元函数方向导数 : 代数计算
- 例子 : 求曲面按照 h 向量方向的
- θ : h 向量与 x 轴的夹角
- 方向导数 : 两个方向上的导数的三角函数加和
- Du : 方向梯度
- 向量形式 :
6 ,梯度 : 两个偏导数形成的向量
- 图 :
- 代数式 :
- A : ( 点 A’ 在 x 轴方向的斜率,点 A’ 在 y 轴方向的斜率 )
- θ : 向量 h 与 x 轴的夹角
- I : ( cosθ,sinθ )
- α :向量 A 与向量 h 的夹角
- 可见 : 当向量 A 与向量 I ( 也就是向量 h ) 的夹角为 0 时,方向导数最大
- 梯度 :
1 ,向量 A 叫做函数的梯度 ( 跟两个片导数有关 )
2 ,函数在梯度的方向上变化最快 - 变化最快 : h 向量与 A 向量平行时,变化最快 ( 坡度最大 )