03 ,二元函数,二元函数偏导数,方向导数,梯度 :

本文深入探讨了二元函数的几何与代数特性,包括曲面的概念、偏导数的意义及其计算方法,方向导数的理解与计算,以及梯度的形成与应用。通过实例解析,帮助读者理解多元函数在不同方向上的变化率,以及如何找到函数变化最快的方向。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 ,二元函数 : 几何意义

  1. 集合意义 :一个曲面
  2. 定义域 : D 为定义域
  3. 值域 : M 曲面

2 ,二元函数偏导数 :几何意义

  1. 偏导数 : 对一个变量的导数
  2. 例子 :
  3. 理解 :
    1 ,函数 z=f(x,y) 代表曲面
    2 ,用 y=y0 截一下,得到一条曲线
    3 ,在这条曲线上,对 x 求导,得到的依然是斜率
    4 ,本质 : 依然是线的斜率,x 偏导数是针对 x 的斜率
    5 ,y 偏导数是针对 y 的斜率

3 ,二元函数偏导数 : 代数运算

  1. 例子 :

4 ,二元函数方向导数 : 几何理解

  1. 方向导数 : 多元函数沿任意方向的变化率
  2. 如图 :

5 ,二元函数方向导数 : 代数计算

  1. 例子 : 求曲面按照 h 向量方向的
  2. θ : h 向量与 x 轴的夹角
  3. 方向导数 : 两个方向上的导数的三角函数加和
    在这里插入图片描述
  4. Du : 方向梯度
  5. 向量形式 :
    在这里插入图片描述

6 ,梯度 : 两个偏导数形成的向量

  1. 图 :
  2. 代数式 :
    在这里插入图片描述
  3. A : ( 点 A’ 在 x 轴方向的斜率,点 A’ 在 y 轴方向的斜率 )
  4. θ : 向量 h 与 x 轴的夹角
  5. I : ( cosθ,sinθ )
  6. α :向量 A 与向量 h 的夹角
  7. 可见 : 当向量 A 与向量 I ( 也就是向量 h ) 的夹角为 0 时,方向导数最大
  8. 梯度 :
    1 ,向量 A 叫做函数的梯度 ( 跟两个片导数有关 )
    2 ,函数在梯度的方向上变化最快
  9. 变化最快 : h 向量与 A 向量平行时,变化最快 ( 坡度最大 )
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值