chatglm
文章平均质量分 87
学术菜鸟小晨
5年IT从业经验,人工智能高级算法工程师、人工智能领域新星创作者、博客专家
展开
-
ChatGLM:向量化构建本地知识库原理
将上下文的词向量输入CBOW模型, 由隐含层累加得到中间向量,将中间向量输入哈夫曼树的根节点, 根节点会将其分到左子树或右子树。Word2Vec是用来生成词向量的工具,而词向量与语言模型有着密切的关系。Skip-gram模型同样是一个三层神经网络,skip-gram模型的结构与CBOW模型正好相反,skip-gram模型输入某个单词,输出对它上下文词向量的预测。将单词W的上下文的词向量输入CBOW, 由隐含层累加, 在第三层的哈夫曼树中沿着某个特定的路径到达某个叶节点, 从给出对单词W的预测。原创 2023-10-12 15:48:56 · 2715 阅读 · 0 评论 -
如何使用Langchain-ChatGLM快速搭建个人知识库
其中,Langchain-ChatGLM是一款使用了GPT-2语言模型的聊天机器人,它可以帮助用户快速搭建个人知识库,实现自动化问答和知识管理。总之,Langchain-ChatGLM是一款非常有用的工具,它可以帮助我们快速搭建个人知识库,实现自动化问答和知识管理。1. 当我们未加载知识库时,我们可以向机器人提出问题,例如“请列举10个工业互联网典型的应用场景”。接下来,我们需要拉取Langchain-ChatGLM的仓库,并进入目录。接下来,我们可以执行webui.py脚本,来体验Web交互。原创 2023-09-27 09:06:42 · 1525 阅读 · 0 评论