数据处理
学术菜鸟小晨
5年IT从业经验,人工智能高级算法工程师、人工智能领域新星创作者、博客专家
展开
-
低光图像增强:DEFormer: DCT-driven Enhancement Transformer for Low-light Image and Dark Vision
4)方法:本文提出了一个可学习的频域分支(LFB),用于频域增强,包括DCT处理和基于曲率的频域增强(CFE)。同时,将DEFormer用作暗区检测的预处理,有效提升了检测器的性能,在ExDark和DARK FACE数据集上的mAP分别提高了2.1%和3.4%。5)结果:实验证明,DEFormer方法在低光照图像增强方面取得了显著的成果,特别是在暗区检测中,使检测器的性能得到了明显提升,ExDark和DARK FACE数据集的mAP分别提高了2.1%和3.4%。2)应用:可应用于自动驾驶。原创 2023-09-18 16:51:40 · 392 阅读 · 0 评论 -
python去除重复图片(数据清洗)
数据清洗是指对数据进行审查、修改和删除,以确保数据的准确性、完整性和一致性。数据清洗通过重复数据处理:识别并处理数据中的重复记录,避免因数据重复导致分析结果产生偏差。数据清洗的意义在于确保数据质量,提高数据分析和挖掘的准确性和可靠性。通过数据清洗,可以减少数据分析过程中的错误和偏差,确保分析结果更加可信。同时,高质量的数据也为后续建模、预测和决策提供了坚实的基础。原创 2023-08-02 14:03:17 · 1638 阅读 · 0 评论 -
对爬图产生的损坏图片进行批量删除
通过爬图产生批量错误图片(损坏图片),用以下代码进行过滤删除。原创 2023-04-19 10:47:36 · 330 阅读 · 0 评论 -
数据清洗:批量删除xml长宽小于15*15的标注框
【代码】数据清洗:批量删除xml长宽小于15*15的标注框。原创 2023-02-09 17:17:54 · 198 阅读 · 0 评论 -
python批量读取视频并按指定数量抽帧
将多个视频放入视频文件夹video中,file1就是截图文件所在。原创 2022-06-16 08:48:01 · 661 阅读 · 0 评论 -
统计多少个类,每个类多少个框
放在 JPEGImages和Annotation 同一目录下即可运行。原创 2022-06-02 15:05:29 · 159 阅读 · 1 评论 -
垃圾检测+数据集
城市路边垃圾检测数据集:城市路边垃圾检测数据集分享:垃圾检测+数据集(非垃圾分类数据集)-深度学习文档类资源-CSDN下载原创 2022-03-30 13:49:28 · 4682 阅读 · 9 评论 -
python 实现对应图片名合并二个的xml文件
python 实现对应图片名合并二个的xml文件例如:A.xml<annotation> <folder>JPEGImages</folder> <filename>dog.jpg</filename> <path>/home/ycc/darknet-master/data/JPEGImages/dog.jpg</path> <source> <database>Unknow原创 2022-03-25 16:57:10 · 2221 阅读 · 1 评论 -
火焰烟雾检测数据集
火焰烟雾检测数据集分享: 火焰+烟雾+数据集(六千多张图)-深度学习文档类资源-CSDN下载原创 2022-03-16 10:39:54 · 3670 阅读 · 7 评论 -
厨师帽口罩检测
针对这些难点,需要综合运用计算机视觉、深度学习、图像处理等技术,结合大量的数据进行训练和优化,才能够实现稳定可靠的厨师帽口罩检测系统。下面提供优质的厨师帽口罩数据集。:人们戴着厨师帽和口罩时可能会有不同的头部姿态,识别算法需要具备良好的鲁棒性,能够应对不同角度和姿态的检测。:在医院或诊所中,通过检测医护人员是否佩戴口罩,可以有效控制传染病的扩散,并保护患者和医护人员的健康。:在某些场合,比如医疗卫生领域,对实时性的要求较高,需要快速准确地检测出口罩和帽子的佩戴情况。原创 2022-01-17 11:20:08 · 1649 阅读 · 0 评论 -
调用飞桨AI Studio 看年轻和衰老的样子
项目地址:飞桨AI Studio - 人工智能学习与实训社区领取AI Studio免费算力。运行AI Studio,选择最好的GPU:安装环境: cd /home/aistudio/PaddleGANpip install -r requirements.txt#本地安装PaddleGANpython setup.py develop#安装所需包 首次此安装包大约需要5分钟pip install dlib cd applications/python -u t.原创 2021-12-24 16:53:46 · 1371 阅读 · 0 评论 -
调用百度AI实现人像分割(下)
人像分割是一种计算机视觉技术,旨在将图像中的人物与背景进行有效地分离。这项技术在许多应用中都非常有用,比如人像摄影、视频编辑、虚拟背景等。通常,人像分割可以通过以下几种方式实现:传统方法:传统的人像分割方法通常基于图像的颜色、纹理、边缘等特征来区分人物和背景。这些方法包括阈值分割、边缘检测、区域生长等,虽然在某些场景下仍然有用,但在复杂场景下表现可能不佳。深度学习方法:近年来,随着深度学习技术的发展,基于神经网络的人像分割方法取得了巨大进展。特别是语义分割和实例分割技术,如FCN(全卷积网络)、Ma原创 2021-12-20 17:37:22 · 23972 阅读 · 25 评论 -
调用百度AI实现人像分割(上)
人像分割是一种计算机视觉技术,旨在将图像中的人物与背景进行有效地分离。这项技术在许多应用中都非常有用,比如人像摄影、视频编辑、虚拟背景等。通常,人像分割可以通过以下几种方式实现:传统方法:传统的人像分割方法通常基于图像的颜色、纹理、边缘等特征来区分人物和背景。这些方法包括阈值分割、边缘检测、区域生长等,虽然在某些场景下仍然有用,但在复杂场景下表现可能不佳。深度学习方法:近年来,随着深度学习技术的发展,基于神经网络的人像分割方法取得了巨大进展。特别是语义分割和实例分割技术,如FCN(全卷积网络)、Ma原创 2021-12-17 17:41:36 · 3017 阅读 · 0 评论 -
非机动车检测,电动车自行车检测
非机动车违规停放检测是指利用先进的技术手段,对非机动车在道路、人行道等禁止停放区域内的违规停放行为进行监测和记录。这项技术通常借助摄像头、传感器、图像识别等设备,能够自动识别非机动车违规停放的情况,并生成相应的警示信息或罚单。意义:提升交通秩序:非机动车乱停乱放严重影响道路交通秩序和行人通行安全。通过违规停放检测,可以有效减少非机动车乱停乱放现象,提升交通秩序,减少交通拥堵,确保道路畅通。提高城市形象:大量的违规停放现象会使城市显得混乱不堪,给居民和游客留下不好的印象。原创 2021-12-10 16:22:51 · 5206 阅读 · 0 评论 -
抽烟检测及其数据集
抽烟行为目标检测数据集下载地址分享:抽烟数据集(多个场景)-深度学习文档类资源-CSDN下载原创 2021-10-13 17:23:45 · 4770 阅读 · 0 评论 -
猫数据集及其检测
猫数据集下载地址分享:https://download.csdn.net/download/qq_34717531/21494741原创 2021-08-25 11:49:37 · 1201 阅读 · 0 评论 -
狗的数据集及其检测
狗目标检测数据集下载地址分享:https://download.csdn.net/download/qq_34717531/20813390原创 2021-08-06 10:24:10 · 1095 阅读 · 0 评论 -
voc数据集提取某类或某几类的图片和xml
网上大多数都是下面方法:https://blog.csdn.net/weixin_39881922/article/details/85070808但是遇到某些不规则图片名时会报错:使用如下代码便不会有任何问题:import xml.etree.ElementTree as ETimport osimport shutil def copy(xml_path,jpg_path,aim_path,aimxml_path): filelist = os.listdir(..原创 2021-07-19 10:34:59 · 938 阅读 · 2 评论 -
玩手机检测
玩手机数据集下载地址分享: https://download.csdn.net/download/qq_34717531/19870205原创 2021-06-25 09:56:14 · 2864 阅读 · 4 评论 -
python批量提取图片名并从大文件中复制同名图片出来
import osimport shutilfile_path1='./JPEGImages/' ##需要图片名的文件file_path2='./out1/' ##需要图片的文件file_path3='./path/' ##保存图片的文件a=os.listdir(file_path1)print(a)for i in a: print(i) shutil.copy(file_path2+i,file_path3+i)...原创 2021-06-07 11:24:05 · 787 阅读 · 0 评论 -
删除xml中不想要的类
删除xml中不想要的类原创 2021-06-01 15:08:17 · 755 阅读 · 0 评论 -
扩增数据(自动标注)--------根据坐标位置txt生成xml文件
Python代码的图片自动标注是指使用Python编程语言来自动识别图片中的内容,并为其添加标签或注释的过程。这通常通过机器学习和深度学习模型来实现,其中最常见的模型是卷积神经网络(CNN)。这些模型能够识别和理解图片中的对象、场景和各种特征,然后基于这些理解自动为图片生成标签。原创 2021-04-21 17:12:30 · 57 阅读 · 0 评论 -
根据.txt图片列表提取想要的图片
# -*- coding: utf-8 -*-import shutilimport os def objFileName(): local_file_name_list = "2008_test.txt" obj_name_list = [] for i in open(local_file_name_list, 'r'): obj_name_list.append(i.replace('\n', '')) return obj_name_li...原创 2021-03-10 10:08:48 · 852 阅读 · 0 评论 -
对数据集所有图片进行重命名 对应的xml也重命名
import numpy as npimport globimport osimport xml.etree.ElementTree as ETimport xml.dom.minidom'''第一步,将xml文件和图片重新命名'''# 获取文件夹中图片的数量def getDirImageNum(path): bmpDirImagesNum = 0 for bmpfile in os.listdir(path): if os.path.splitex.转载 2020-12-24 10:59:35 · 1607 阅读 · 8 评论 -
github git clone 下载太慢解决办法
github git clone 下载太慢解决办法:git clone 加速:git clone https://github.com.cnpmjs.org/..........将github.com替换为github.com.cnpmjs.org即可。原创 2020-12-15 11:05:45 · 691 阅读 · 1 评论 -
目标检测误检太多解决办法
误检太多解决办法:1.增加数据。2.如果没有数据,增加负样本。将没有目标物体的场景当做负样本,生成空标签(如下代码),加入训练即可。import osimport xml.dom.minidom img_path = './fu/'xml_path = './xml/'for img_file in os.listdir(img_path): img_name = os.path.splitext(img_file)[0] #create an empty d原创 2020-11-03 14:41:53 · 4489 阅读 · 3 评论 -
voc数据集提取单类
# -*- coding: utf-8 -*-# @Function:There are 20 classes in VOC data set. If you need to extract specific classes, you can use this program to extract them. import osimport shutilann_filepath='./Annotations/'img_filepath='./JPEGImages/'img_savepath=.原创 2020-11-02 17:12:59 · 1088 阅读 · 0 评论 -
python实现:根据标签列表批量提取图片
如何根据test.txt将测试图片提取出来?import osimport shutil#测试列表name_list=open('./2008_test.txt')#图片路径tu_dir='./VOC2008/JPEGImages'#保存路径save='./test'dir_name = []#获取文件名for i in name_list: dir_name.append(os.path.basename(i.replace('\n','')))#print(di原创 2020-10-24 09:22:31 · 1364 阅读 · 1 评论 -
批量修改标签名
批量修改标签名,本例批量修改为smoke。import osimport os.pathfrom xml.etree.ElementTree import parse, Element#批量修改xml中内容def test(): path = "./Annotations/"#xml文件所在的目录 files = os.listdir(path) # 得到文件夹下所有文件名称 s = [] for xmlFile in files: # 遍历文件夹 .原创 2020-10-22 17:25:43 · 604 阅读 · 0 评论 -
python批量加前缀
import oswhile True: content=input('请输入目录:') # file04 if os.path.exists(content): '''表示路径存在''' os.chdir(content) # 切换到输入的目录 切换到了file04目录 all_file_lst=os.listdir(os.getcwd()) # 获取目录列表形式 将file03目录下的文件或者文件夹以列表形式打印 .原创 2020-10-16 17:14:43 · 2403 阅读 · 0 评论