[学习笔记]导数与定积分简单入门

本文章是[学习笔记]生成函数进阶的一部分

1.导数

1.1 定义

导数:
在这里插入图片描述
导函数:

所有可导区间的导数组成了一个新的函数,我们将它称为 f ( x ) f(x) f(x)的导函数,记为 f ′ ( x ) f'(x) f(x)
d x \mathrm{d} x dx表示对x取无穷小的量,那么 f ′ ( x ) = d f ( x ) d x f'(x)=\frac{\mathrm{d}f(x)}{\mathrm{d}x} f(x)=dxdf(x)

1.2 导数的运算

I.初等函数导数运算:

[证明估计是要到大学才学了…]

f ( x ) f(x) f(x) f ′ ( x ) f'(x) f(x)
C C C( C C C为常数) 0 0 0
x α x^{\alpha} xα( α ∈ Q ∗ \alpha \in Q^{*} αQ) α x α − 1 \alpha x^{\alpha-1} αxα1
a x a^x ax a x ln ⁡ a a^x\ln a axlna
e x e^x ex e x e^x ex
log ⁡ a x \log_a x logax 1 x ln ⁡ a \frac{1}{x\ln a} xlna1
ln ⁡ x \ln x lnx 1 x \frac{1}{x} x1
sin ⁡ x \sin x sinx cos ⁡ x \cos x cosx
cos ⁡ x \cos x cosx − sin ⁡ x -\sin x sinx
II.导数四则运算:

(1) [ f ( x ) ± g ( x ) ] ′ = f ′ ( x ) ± g ′ ( x ) , [ C f ( x ) ] ′ = C f ′ ( x ) [f(x)±g(x)]'=f'(x)±g'(x),[Cf(x)]'=Cf'(x) [f(x)±g(x)]=f(x)±g(x),[Cf(x)]=Cf(x)
(2) [ f ( x ) ⋅ g ( x ) ] ′ = f ′ ( x ) g ( x ) + f ( x ) g ′ ( x ) [f(x)·g(x)]'=f'(x)g(x)+f(x)g'(x) [f(x)g(x)]=f(x)g(x)+f(x)g(x)
(3) [ f ( x ) g ( x ) ] ′ = f ′ ( x ) g ( x ) − f ( x ) g ′ ( x ) g 2 ( x ) ( g ( x ) ≠ 0 ) [\frac{f(x)}{g(x)}]'=\frac{f'(x)g(x)-f(x)g'(x)}{g^2(x)}(g(x)≠0) [g(x)f(x)]=g2(x)f(x)g(x)f(x)g(x)(g(x)=0)

III.复合函数的导数:

[ f ( g ( x ) ) ] ′ = d f ( g ( x ) ) d g ( x ) = d f ( g ( x ) ) d x ⋅ d x d g ( x ) = f ′ ( g ( x ) ) ⋅ g ′ ( x ) [f(g(x))]'=\frac{\mathrm{d}f(g(x))}{\mathrm{d} g(x)}=\frac{\mathrm{d}f(g(x))}{\mathrm{d} x}·\frac{\mathrm{d}x}{\mathrm{d} g(x)}=f'(g(x))·g'(x) [f(g(x))]=dg(x)df(g(x))=dxdf(g(x))dg(x)dx=f(g(x))g(x)

1.3 导数与函数

I.导数与函数单调性的关系:

如果在某个开区间内总有 f ′ ( x ) > 0 f'(x)>0 f(x)>0,那么 f ( x ) f(x) f(x)为增函数。
减函数同理。

II.费马定理:

0-2

III.利用导数求函数的极值(点)

若函数在定义域内可导,则求解其极值 (点) 的步骤如下:

(1) 确定函数定义域;
(2) 求导数 f ′ ( x ) f'(x) f(x)
(3) 在定义域内求方程 f ′ ( x ) = 0 f'(x) = 0 f(x)=0 的根;
(4) 检查 f ′ ( x ) f'(x) f(x) 在方程根左右的值的符号,如果左正右负,那么 f ( x ) f (x) f(x) 在这个根处取得极大值,对应根为极大值点;如果左负右正,那么 f ( x ) f (x) f(x) 在这个根处取得极小值,这个根为极小值点;如果左右同号,那么 f ( x ) f (x) f(x) 在这个根处不取极值。

2.定积分初步

2.1 定义

[从某网校物理讲义上扒过来的定义…有水印,应该不叫侵权…]
0-3

2.2 定积分的几何意义

通俗的来讲,定积分就是 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]域上的有向面积。
有向面积顾名思义就是在 x x x轴上面的权值为正,在 x x x轴下面的权值为负,换个说法就是函数在 x x x轴上面的总面积减 x x x轴下面的总面积。
在这里插入图片描述

2.3 微积分基本定理

有一个很高级的名字叫牛顿—莱布尼茨公式。

一般地,如果 f ( x ) f (x) f(x) 是区间 [ a , b ] [a,b] [a,b] 上的连续函数,并且 F ′ ( x ) = f ( x ) F'(x)=f(x) F(x)=f(x),那么 ∫ a b f ( x ) d x = F ( b ) − F ( a ) \int ^b_a f(x)\mathrm{d}x = F (b)-F(a) abf(x)dx=F(b)F(a)

要注意 f ( x ) f(x) f(x) F ( x ) F(x) F(x)的导数。
初看这个定理你可能无法理解,我们可以来举一个例子:

在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。
那么如果我们给出瞬时速度的函数 f ( x ) f(x) f(x),那么物体位移的函数就是 F ( x ) F(x) F(x)
根据2.2的内容, ∫ a b f ( x ) d x \int ^b_a f(x)\mathrm{d}x abf(x)dx就是物体在 [ a , b ] [a,b] [a,b]的位移,正好就是 F ( b ) − F ( a ) F(b)-F(a) F(b)F(a)

2.4 奇偶函数的定积分

我们知道若函数是奇函数,则其但函数为偶函数;若函数为偶函数,则其导函数为奇函数,于是根据积分与导数的关系,函数在其对称区间上积分时有如下结论:

(1)若函数 f ( x ) f(x) f(x) 为偶函数, ∫ − a a f ( x ) d x = 2 F ( a ) \int^a_{-a} f(x)\mathrm{d} x=2F(a) aaf(x)dx=2F(a)
(2)若函数 f ( x ) f(x) f(x) 为奇函数, ∫ − a a f ( x ) d x = 0 \int^a_{-a} f(x)\mathrm{d} x=0 aaf(x)dx=0

说不定哪时候会派上用场。

2.5 定积分的运算性质

(1) ∫ a b k ⋅ f ( x ) d x = k ⋅ ∫ a b f ( x ) d x \int^b_{a} k·f(x)\mathrm{d} x=k·\int^b_{a} f(x)\mathrm{d} x abkf(x)dx=kabf(x)dx( k k k为常数)
(2) ∫ a b [ f ( x ) ± g ( x ) ] d x = ∫ a b f ( x ) d x + ∫ a b g ( x ) d x \int^b_{a} [f(x)±g(x)]\mathrm{d} x=\int^b_{a} f(x)\mathrm{d} x+\int^b_{a} g(x)\mathrm{d} x ab[f(x)±g(x)]dx=abf(x)dx+abg(x)dx
(3) ∫ a b f ( x ) d x = ∫ a c f ( x ) d x + ∫ c b f ( x ) d x ( a < c < b ) \int^b_{a} f(x)\mathrm{d} x=\int^c_{a} f(x)\mathrm{d} x+\int^b_{c} f(x)\mathrm{d} x(a<c<b) abf(x)dx=acf(x)dx+cbf(x)dx(a<c<b)

都挺显然的。


END

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值