直线特征提取算法:IEPF(iterative end point fit)

本文解析了IEPF迭代endpointfit算法的工作原理,介绍其如何通过递归处理激光雷达数据,分割并拟合子集来提取直线特征。特别强调了算法在图像处理中的高效应用及点云处理中的挑战,尤其是阈值选择问题。
摘要由CSDN通过智能技术生成
IEPF(iterative end point fit)算法是一种用于直线特征提取的递归算法 。

原理:

       该方法依据一定的递归准则将一个有序数据集合分割为多个子集合,通 过拟合每一个子集合来提取直线特征,其原理如图1所示。

        该算法将经 过预处理的激光雷达数据集合P作为算法的输入。首先,在坐标系中,由被分割数据集合的第一个 数据点P和最后一个数据点Pn确定一条直线L;然后,寻找该集合中到L的距离最大的点 Pk,如果该点所对应的距离大于阈值d则将Pk作为断点,在断点处将该集合分割为两个子集合。再对子集合进行同样的处理,重复直到所有子集合都不满足分割条件为止。

总结:

IEPF效率高,被广泛应用于图像处理算法中。但在处理点云数据时,由于噪声点的存在,阀值的确定是一件比较困难的事情。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

和道一文字_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值