多输入多输出系统的空间表达式及传递函数阵

本文探讨了状态空间描述和控制理论中传递函数之间的联系。通过拉氏变换,将状态空间表达式转换为传递函数阵,展示了多变量系统中输入与输出之间的耦合关系。举例说明了如何从状态空间模型求解系统的传递函数阵,强调了这种转换在系统分析中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

状态空间描述和控制理论传递函数之间存在什么关系呢?

状态空间描述为一种内部描述,为了状态空间对应的输出表达,在此探讨如何从状态空间表达式导出相应的传递函数表达式。

对于最一般形式的状态空间表达式:

其中:(u应为r\times 1

在初始条件为零的前提下,对上式作拉氏变换,得:

得到系统的传递函数阵:

其中,变换过程也非常简单,如下:

系统的传递函数G(s)是一个m \times r的矩阵函数,设:g_{ij}(s)为G(s)的元,则系统的传递函数阵G(s)可表示为以下的形式:

容易看出,其元g_{ij}(s)都是标量函数,它在物理上表示为第j个输入对第i个输出有相互关联。称为耦合关系,这正是多变量系统的特点。

 

以下考虑一个实例:

对于以下系统,求系统的传递函数阵

解:由已知:

,且

(主对调,副变号)

所以,系统的传递矩阵为:

 

 

 

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

autotian

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值