阿里CTR预估三部曲(2):Deep Interest Evolution Network for Click-Through Rate Prediction
Introduction
作者提出以前的CTR预估方法都是直接将用户表现的表示向量当作兴趣而没有通过具体的表现对隐藏的兴趣进行建模。因此提出DIEN,而DIEN有两个关键模块。一个是从具体的用户表现中抽取潜在的兴趣,主要是利用GRU+一个辅助loss,另一个是建模兴趣变化的过程,利用AUGRU。
接下来,我们具体来看看。
DIEN
Interest Extractor Layer
作者首先利用GRU建模用户表现序列:
但是不止如此,作者提出了一个辅助loss来提升兴趣表达的准确性:
利用负采样,来指示产生h(t)与下一个点击的序列相似,同时与负样本尽量不相似,换成损失即如下所示: