阿里CTR预估三部曲(2):Deep Interest Evolution Network for Click-Through Rate Prediction简析

阿里CTR预估三部曲(2):Deep Interest Evolution Network for Click-Through Rate Prediction

Introduction

作者提出以前的CTR预估方法都是直接将用户表现的表示向量当作兴趣而没有通过具体的表现对隐藏的兴趣进行建模。因此提出DIEN,而DIEN有两个关键模块。一个是从具体的用户表现中抽取潜在的兴趣,主要是利用GRU+一个辅助loss,另一个是建模兴趣变化的过程,利用AUGRU。

接下来,我们具体来看看。

DIEN

Interest Extractor Layer

作者首先利用GRU建模用户表现序列:
在这里插入图片描述

但是不止如此,作者提出了一个辅助loss来提升兴趣表达的准确性:

在这里插入图片描述

利用负采样,来指示产生h(t)与下一个点击的序列相似,同时与负样本尽量不相似,换成损失即如下所示:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值