GEE:对二值图层进行腐蚀和/或膨胀操作

本文介绍了数学形态学图像处理中的腐蚀和膨胀操作,常用于二值图像处理,如遥感图像分析和GIS中的栅格数据处理。腐蚀用于减小物体,消除噪声,膨胀则用于扩展物体,填充空隙。这两种操作在图像去噪、物体检测等领域有广泛应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者:CSDN @ _养乐多_

腐蚀和膨胀 是数学形态学图像处理中的两个基本操作,用于修改和分析二值图像(包含只有两个像素值的图像,通常是黑和白)。这些操作可用于处理遥感图像、地理信息系统(GIS)中的栅格数据以及其他领域的图像处理。

在这里插入图片描述

  1. 腐蚀(Erosion):腐蚀是一种用于缩小或减小物体的形态学操作。在腐蚀过程中,将一个固定大小的结构元素(通常是一个小的矩形或圆形区域)滑动遍历整个图像,当结构元素的中心与目标像素相对应时,如果结构元素内的所有像素都为白色(1),则将目标像素设置为白色,否则将其设置为黑色(0)。这将导致原始物体缩小,消除小的孤立噪音或断开的物体。
  • 适用场景:腐蚀通常用于去除小的噪音、分离接触的物体或缩小物体的尺寸。在地理信息系统中,腐蚀可以用于裁剪栅格数据以适应特定区域或去除边界噪音。
  1. 膨胀(Dilation):膨胀是一种用于扩展或增大物体的形态学操作。在膨胀过程中,同样使用一个结构元素,但与腐蚀不同的是,如果结构元素内的至少一个像素是白色,则目标像素被设置为白色,否则设置为黑色。这将导
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

_养乐多_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值