Description
逆时针给出
n个凸多边形的顶点坐标,求它们交的面积。例如n=2时,两个凸多边形如下图:
则相交部分的面积为5.233。
Input
第一行有一个整数n,表示凸多边形的个数,以下依次描述各个多边形。第i个多边形的第一行包含一个整数mi,表示多边形的边数,以下mi行每行两个整数,逆时针给出各个顶点的坐标。
Output
输出文件仅包含一个实数,表示相交部分的面积,保留三位小数。
Sample Input
2
6
-2 0
-1 -2
1 -2
2 0
1 2
-1 2
4
0 -3
1 -1
2 2
-1 0
6
-2 0
-1 -2
1 -2
2 0
1 2
-1 2
4
0 -3
1 -1
2 2
-1 0
Sample Output
5.233
半平面交模板 注意去除平行的边(排序时按照位置排序,加入边集时去重)
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<string>
#include<algorithm>
#include<cmath>
using namespace std;
const int Maxn=1005;
inline int read()
{
char ch=getchar();int i=0,f=1;
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){i=(i<<3)+(i<<1)+ch-'0';ch=getchar();}
return i*f;
}
struct point
{
double x,y;
point(double x=0,double y=0):x(x),y(y){}
friend inline point operator -(const point &a,const point &b)
{
return point(a.x-b.x,a.y-b.y);
}
friend inline double operator *(const point &a,const point &b)
{
return a.x*b.y-a.y*b.x;
}
}p[Maxn];
struct line
{
point a,b;
double slop;
friend inline bool operator <(const line &a,const line &b)
{
if(a.slop!=b.slop) return a.slop<b.slop;
return (a.b-a.a)*(b.b-a.a)>0;
}
}l[Maxn],q[Maxn];
inline point inter(line a,line b)
{
double k1,k2,t;
k1=(b.b-a.a)*(a.b-a.a);
k2=(a.b-a.a)*(b.a-a.a);
t=k1/(k1+k2);
point ans;
ans.x=b.b.x+(b.a.x-b.b.x)*t;
ans.y=b.b.y+(b.a.y-b.b.y)*t;
return ans;
}
int n,m,cnt,tot;
double ans;
inline bool judge(line a,line b,line c)
{
point q=inter(a,b);
return (c.b-c.a)*(q-c.a)<0;
}
inline void hpi()
{
sort(l+1,l+cnt+1);
int L=1,R=0;tot=0;
for(int i=1;i<=cnt;i++)
{
if(l[i].slop!=l[i-1].slop)tot++;
l[tot]=l[i];
}
cnt=tot;tot=0;
q[++R]=l[1],q[++R]=l[2];
for(int i=3;i<=cnt;i++)
{
while(L<R&&judge(q[R-1],q[R],l[i]))R--;
while(L<R&&judge(q[L+1],q[L],l[i]))L++;
q[++R]=l[i];
}
while(L<R&&judge(q[L+1],q[L],q[R]))L++;
while(L<R&&judge(q[R-1],q[R],q[L]))R--;
q[R+1]=q[L];
for(int i=L;i<=R;i++)
p[++tot]=inter(q[i],q[i+1]);
}
inline void getans()
{
if(tot<3)return;
p[tot+1]=p[1];
for(int i=1;i<=tot;i++)
ans+=p[i]*p[i+1];
ans=fabs(ans)/2;
}
int main()
{
n=read();
while(n--)
{
m=read();
for(int i=1;i<=m;i++)
p[i].x=read(),p[i].y=read();
p[m+1]=p[1];
for(int i=1;i<=m;i++)l[++cnt].a=p[i],l[cnt].b=p[i+1];
}
for(int i=1;i<=cnt;i++)
{
l[i].slop=atan2(l[i].b.y-l[i].a.y,l[i].b.x-l[i].a.x);
}
hpi();
getans();
printf("%.3f",ans);
return 0;
}